Maria V Dovydenkova, Evgenia N Kolodina, Daria A Nikanova, Tatyana I Logvinova, Olga A Artemieva

Animal Husbandry and Fodder Production. 2024. Vol. 107, no 2. Р. 149-169.

doi:10.33284/2658-3135-107-2-149

Review article

The effectiveness of using carotene-synthesizing yeast Rhodotorula spp. in feeding farm animals (review)

 

Maria V Dovydenkova1, Evgenia N Kolodina2, Daria A Nikanova3, Tatyana I Logvinova4,

Olga A Artemieva5

1,2,3,4,5Federal Research Center for Animal Husbandry named after Academy Member LK Ernst,  Dubrovitsy, Russia

1vijmikrob@mail.ru, https://orcid.org/0000-0002-3093-4117

2vijmikrob@mail.ru, https://orcid.org/0000-0002-4017-3390

3vijmikrob@mail.ru, https://orcid.org/0000-0001-5164-244X

4vijmikrob@mail.ru, https: //orcig.org/0000-0001-7075-544X

5vijmikrob@mail.ru, https://orcid.org/0000-0001-7706-4182

 

Abstract. The successful development of agricultural sectors, such as livestock farming, poultry farming and aquaculture, depends on the availability of feed. Alternative technologies include microbiological synthesis. New uses are driven by the recognition that yeast derivatives contain specific bioactive compounds that have functional properties - from improving feed efficiency to being used as an alternative to growth-promoting antibiotics and maintaining intestinal health and immunity while reducing pathogen release. The results of scientific research presented in this article emphasize the important role of carotene-synthesizing yeast as a functional feed additive for the nutrition of farm animals and poultry. Red yeast is capable of synthesizing carotenoids from inexpensive carbon sources; carotenoids are important due to their activity as precursors of vitamin A, dyes, and antioxidants. Carotenoids can be easily produced by chemical synthesis, although their biotechnological production is rapidly becoming an attractive alternative to chemical processes. They also participate in molecular processes, which leads to possible beneficial effects on the body as a whole. Biosynthesis of carotenoids is a specific feature of the genera Rhodotorula, Rhodosporidium and Phaffia. The main carotenoid pigments produced by the yeasts Rhodotorula and Rhodosporidium are β-carotene, torulen and torulorhodine in varying proportions, as well as astaxanthin produced by Phaffia rhodozyma.

Keywords: animal husbandry, feed, probiotics, carotene-synthesizing yeast, carotenoids

Acknowledgments: the   work   was   supported  by  the  Russian  Science  Foundation,   Project No. 23-16-00167.

For citation: Dovydenkova MV, Kolodina EN, Nikanova DA, Logvinova TI, Artemyeva OA. Efficiency of using carotene-synthesizing yeast Rhodotorula spp. in the feeding of farm animals (review). Animal Husbandry and Fodder Production. 2024;107(2):149-169. (In Russ.). https://doi.org/10.33284/2658-3135-107-2-149

 

References

 
  1. Davoli P, Mierau VA, Weber RWS. Carotenoids and fatty acids in red yeast Sporobolomyces roseus and Rhodotorula glutinis. Applied Biochemistry and Microbiology. 2004;40(4):460-465.
  2. Bannizina TE, Kanarskii AV,   Shcherbakov AV,  Chebotar VK,  Kiprushkina EI.  Yeasts in  modern    Journal  of  International  Academy  of  Refrigeration.  2016;1:24-29. doi: 10.21047/1606-4313-2016-16-1-24-29
  3. Zavyalova AN, Surzhik AV. Physiological role of natural carotinoids. Current Pediatrics (Moscow). 2008;7(6):145-149.
  4. Kolodina EN, Artemyeva OA, Kotkovskaya EN, Pavlyuchenkova OV, Pereselkova DA. Study of biological saferty yeasts of the genus candida as a potential source of feed protein. Vestnik OrelGAU. 2016;5(62):72-78. doi: 15217/48484
  5. Duskaev GK, Levakhin GI, Korolyov VL, Sirazetdinov FKh. Use of probiotics and plant extracts to improve the productivity of ruminants (review). Animal Husbandry and Fodder Production. 2019;102(1):136-148. doi: 10.33284/2658-3135-102-1-136
  6. Kolpakova VV et al. Use of environmentally safe micromycetes of the genus Rhodotorula to obtain fodder carotene containing concentrate. South of Russia: Ecology, Development. 2022;17:4(65):61-78. doi: 10.18470/1992-1098-2022-4-61-78
  7. Deyneka VI, Shaposhnikov  AA,  Deyneka  LA,  Guseva  TS,  Vostrikrova SM, Shentseva EA, Zakirova LR. Carotenoids: the structure, biological functions and perspectives of application. Belgorod State University Scientific Bulletin. Medicine. Pharmacy. 2008;6(46):19-25.
  8. Kiritsa E. Effect of plant extracts on the process of carotenoid biosynthesis by yeasts. Herald of Agroindustrial complex of Upper Volga region. 2017;3(39):54-58.
  9. Zakharov ZV, German LS, Petrischeva OA, Zharko MY. The cultivation of the yeast Phaffia rhodozyma with constant or periodic light. Izvestiya MSTU "MAMI". 2012;4:2(14):86-89.
  10. Moshkina SV, Khimicheva SN. Influence of Active East feed additive on productive qualities of young dairy replacement cattle. Animal Husbandry and Fodder Production. 2020;103(3):153-164. doi: 10.33284/2658-3135-103-3-153
  11. Savchik AV, Novik GI. Carotene-producing yeast-like fungi and their application in biotechnologiaia survey. Food Industry: Science and Technologies. 2020;13:3(49):70-83.
  12. Chervyakova OP, Karaulova SS. Investigation of carotenogenesis by yeast Rhodotorula rubra. Advances in Chemistry and Chemical Technology. 2009;13(10(103):117-120.
  13. Aksu Z, Eren AT.  Carotenoids   production   by   the   yeast   Rhodotorula   mucilaginosa:  Use  of  agriculture  wastes  as  a  carbon source.  Process Biochemistry. 2005;40(9):2985-2991. doi: 10.1016/j.procbio.2005.01.011
  14. Aksu Z, Eren AT. Production of carotenoids by the isolated yeast of Rhodotorula glutinis. Biochem Eng J. 2007;35(2):107-113. doi: 10.1016/j.bej.2007.01.004
  15. An GH, Song JY, Kwak WK, Lee BD, Song KB, Choi JE. Improved astaxanthin availability due to drying and rupturing of the red yeast, Xanthophyllomyces dendrorhous. Food Sci Biotechnol.  2006;15(4):506-510.
  16. Ayiku S, Shen JF, Tan BP, Dong XH, Liu HY. Effects of dietary yeast culture on shrimp growth, immune response, intestinal health and disease resistance against Vibrio harveyi. Fish Shellfish Immun. 2020;102:286-295. doi: 10.1016/j.fsi.2020.04.036
  17. Bach A, Iglesias C, Devant M. Daily rumen pH pattern of loose-housed dairy cattle as affected by feeding pattern and live yeast supplementation. Animal Feed Science and Technology. 2007;136(1-2):146-153. doi: 10.1016/j.anifeedsci.2006.09.011
  18. Besarab NV, Gerasimovich K, Kanterova AV, Novik GI.  Biosynthetic production of carotenoids using yeast strains of genus Rhodotorula on the cheap beer wort substrate. Journal of Microbiology, Biotechnology And Food Sciences. 2018;7(4):383-386. doi: 15414/jmbfs.2018.7.383-386
  19. Bhosale P, Gadre RV. Production of ß-carotene by a mutant of Rhodotorula glutinis. Applied Microbiology and Biotechnology. 2001;55(4):423-427. doi: 10.1007/s002530000570
  20. Bhosale P, Jogdand  VV,  Gadre RV.  Stability  of  β-carotene  in  spray dried preparation of Rhodotorula glutinis mutant 32. J Appl Microbiol. 2003;95(3):584-590. doi: 10.1046/j.1365-2672.2003.02018.x
  21. Britton G, Hornero-Méndez D. Carotenoids and colour in fruit and vegetables. In: Tomás-Barberán FA, Robins RJ, editors. Phytochemistry of fruit and vegetables. England, Oxford: Clarendon Press; 1997;11-28.
  22. Buzzini P, Innocenti M, Turchetti B, Libkind D, et al. Carotenoid profiles of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces and Sporidiobolus. Canadian Journal of Microbiology. 2007;53(8):1024-1031. doi: 10.1139/W07-068
  23. Buzzini P, Vaughn-Martini A. Yeast biodiversity and biotechnology. In: Péter G, Rosa C, editors. Biodiversity and Ecophysiology of Yeasts. The Yeast Handbook. Berlin, Heidelberg: Springer; 2006:533-559. doi: 1007/3-540-30985-3_22
  24. Buzzini P. Batch  and  fed-batch  carotenoid production by Rhodotorula glutinis–Debaryomyces castellii co-cultures in corn syrup. Journal of Applied Microbiology. 2001;90(5):843-847. doi: 10.1046/j.1365-2672.2001.01319.x
  25. Callaway ES, Martin SA.  Effects  of  a  Saccharomyces  cerevisiae  culture  on  ruminal bacteria  that  utilize  lactate  and  digest    Journal  of  Dairy Science. 1997;80(9):2035-2044. doi: 10.3168/jds.S0022-0302(97)76148-4
  26. Chaucheyras-Durand F, Walker ND, Bach A. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Animal Feed Science and Technology. 2008;145(1-4):5-26. doi: 10.1016/j.anifeedsci.2007.04.019
  27. Chen G, Wang J, Su Y, Zhu Y, Zhang G, Zhao H, et al. Pullulan production from synthetic medium by a new mutant of Aureobasidium pullulans. Prep Biochem Biotechnol. 2017;47(10):963-969. doi: 10.1080/10826068.2017.1350979
  28. Corona L, Mendoza GD, Castrejón FA, Crosby MМ, Cobos МА. Evaluation of two yeast cultures (Saccharomyces cerevisiae) on ruminal fermentation and digestion in sheep fed a corn stover diet. Small Ruminant Research. 1999;31(3):209-214. doi: 10.1016/S0921-4488(98)00146-1
  29. Costa I, Martelli HL, De Silva IM, Pomeroy D. Production of β -carotene by Rhodotorula Strain. Biotech Lett. 1987;9(5):373-375. doi: 10.1007/BF01025808
  30. Coutinho JOPA, Quintanilha MF, Campos MRA, et al. Antarctic Strain of Rhodotorula mucilaginosa UFMGCB 18,377 Attenuates Mucositis Induced by 5‑Fluorouracil in Mice. Probiotics and Antimicrobial Proteins. 2022;14:486-500. doi: 10.1007/s12602-021-09817-0
  31. Cudowski A, Pietryczuk A. Biochemical  response  of  Rhodotorula  mucilaginosa  and Cladosporium  herbarum  isolated  from  aquatic  environment on iron (III) ions. Sci Rep. 2009;9:19492. doi: 10.1038/s41598-019-56088-5
  32. Daudu R, Parker CW, Singh NK, Wood JM, Debieu M, O'hara NB et al. Draft genome sequences of Rhodotorula mucilaginosa strains isolated from the international space station. Microbiol Resour Announc. 2020;9:00570-20. doi: 10.1128/MRA.00570-20
  33. Dávila-Ramírez JL, Carvajal-Nolazco MR, López-Millanes MJ, González-Ríos H, Celaya-Michel H, Sosa-Castañeda J, et al. Effect of yeast culture (Saccharomyces cerevisiae) supplementation on growth performance, blood metabolites, carcass traits, quality, and sensorial traits of meat from pigs under heat stress. J Anim Feed Sci. 2020;267:114573. doi: 10.1016/j.anifeedsci.2020.114573
  34. Davoli P, Mierau V,  Weber RWS.  Carotenoids  and  fatty  acids  in  red yeasts Sporobolomyces  roseus  and  Rhodotorula glutinis. Appl Biochem Microbiol. 2004;40:392-397. doi: 10.1023/B:ABIM.0000033917.57177.f2
  35. de C. Cardoso LA, Kanno KYF, Karp SG. Microbial production of carotenoids — A review. African Journal of Biotechnology.2017;16(4):139-146. doi: 5897/AJB2016.15763
  36. Denev SA, Peeva T, Radulova P, Stancheva P, Staykova G, Beev G, et al. Yeast cultures in ruminant nutrition. Bulg J Agric Sci. 2007;13:357-74.
  37. Durá ΜA, Flores Μ, Toldrá F. Effect of Debaryomyces spp. on the proteolysis of dry-fermented sausages. Meat Science. 2004;68(2):319-328. doi: 10.1016/j.meatsci.2004.03.015
  38. Durand-Chaucheyras F, Fonty G, Bertin G, Théveniot M, Gouet P. Fate of Levucell® SC I-1077 yeast additive during digestive transit in lambs. Reproduction Nutrition Development. 1998;38(3):275-280. doi: 1051/rnd:19980307
  39. El-Banna AAE-R, El-Razek AMA, El-Mahdy AR. Isolation, Identification and Screening of Carotenoid-Producing Strains of Rhodotorula glutinis. Food and Nutrition Sci. 2012;3(5):627-633. doi:4236/fns.2012.35086
  40. El-Banna Amr A, Amal M Abd El-Razek, El-Mahdy AR. Some factors affecting the production of carotenoids by Rhodotorula glutinis var. Glutinis. Food and Nutrition Sciences. 2012;3:64- doi: 10.4236/fns.2012.31011
  41. Elwan HAM, Elnesr SS, Abdallah Y, Hamdy A, El-Bogdady AH. Red yeast (Phaffia rhodozyma) as a source of astaxanthin and its impacts on productive performance and physiological responses of poultry. World Poultry Sci J. 2019;75(2):273-284. doi:10.1017/S0043933919000187
  42. Falces-Romero I, Cendejas-Bueno E, Romero-Gomez MP, Garcia-Rodriguez J. Isolation of Rhodotorula mucilaginosa from blood cultures in a tertiary care hospital. Mycoses. 2018;61(1):35-39. doi: 10.1111/myc.12703
  43. Fang TJ, Wang JM. Extractability of astaxanthin in a mixed culture of a carotenoid over-producing mutant of Xanthophyllomyces dendrorhous and Bacillus circulans in two-stage batch fermentation. Process Biochem. 2002;37(11):1235-1245. doi: 1016/S0032-9592(02)00011-0
  44. Ferrao M, Garg S. Studies on effect of media components on growth and β-carotene production by Rhodotorula graminis RC04. Journal of Cell and Tissue Research. 2011;11(1):2551-2556.
  45. Fomenky BE, Bissonnette N, Talbo G et al. Impact of Saccharomyces cerevisiae boulardii CNCMI-1079 and Lactobacillus acidophilus BT1386 on total lactobacilli population in the gastrointestinal tract and colon histomorphology of Holstein dairy calves. Animal Feed Science and Technology. 2017;234:151-161. doi: 10.1016/j.anifeedsci.2017.08.019
  46. Fonty G, Chaucheyras-Durand F. Effects and modes of action of live yeasts in the rumen. Biologia. 2006;61:741-50. doi: 10.2478/s11756-006-0151-4
  47. Frengova G, Simova E, Beshkova D. Caroteno-protein and exopolysaccharide production by co-cultures of Rhodotorula glutinis and Lactobacillus helveticus. J Ind Microbiol Biotechnol. 1997;18:272-277. doi: 10.1038/sj.jim.2900379
  48. Frengova GI, Beshkova DM.  Carotenoids  from  Rhodotorula  and  Phaffia: yeasts  of  biotechnological  importance. J Ind Microbiol Biotechnol. 2009;36(2):163-80. doi: 10.1007/s10295-008-0492-9
  49. Frengova GI, Simova ED,  Beshkova DM.  Improvement of carotenoid-synthesizing yeast Rhodotorula rubra by chemical mutagenesis. Zeitschrift fur Naturforschung C. 2004;59(1-2):99-103. doi: 1515/znc-2004-1-220
  50. Frengova GI, Simova ED, Beshkova DM. β-Carotene rich carotenoid-protein preparation and exopolysaccharide production by Rhodotorula rubra GED8 grown with a yogurt starter culture. Z Naturforsch C. 2006;61(7-8):571-577. doi: 10.1515/znc-2006-7-817
  51. Galvão KN et al. Effect of feeding live yeast products to calves with failure of passive transfer on performance and patterns of antibiotic resistance in fecal Escherichia coli. Reproduction Nutrition Development. 2005;45(4):427-440. doi: 10.1051/rnd:2005040
  52. Ge Ye, Kaisen H, Weitian X, Chunhou X, Qiucheng Y, Ying L. Effects of Rhodotorula mucilaginosa on the Immune Function and Gut Microbiota of Mice. Front Fungal Biol. 2021;2: doi: 10.3389/ffunb.2021.705696
  53. Guo J, Chen S, Feng Y, Guo Z, Wu D, Xing C et al. Effects of feeding Rhodotorula mucilaginosa on the growth properties in Scorturm barcoo. Siliao Gongye. 2020;41:44-49.
  54. Gupta A, Vongsvivut J, Barrow CJ, Puri M. Molecular identification of marine yeast and its spectroscopic analysis establishes unsaturated fatty acid accumulation. J Biosci Bioeng. 2012;114(4):411-417. doi: 10.1016/j.jbiosc.2012.05.013
  55. Haddad SG, Goussous SN.  Effect  of  yeast  culture  supplementation  on  nutrient intake, digestibility and growth performance of Awassi lambs. Anim Feed Sci Tech. 2005;118(3-4):343-348. doi: 10.1016/j.anifeedsci.2004.10.003
  56. Han JY, Lee SJ, Jung MK, Choi SK, Roh JS. Process for extracting astaxanthin pigment from yeast and extracted pigment thereof. US patent 2003/0087335 A1. 8 May 2003.
  57. Jouany JP. A new look at yeast cultures as probiotics for ruminants. Feed Mix. 2001;9:17-19.
  58. Kanzy HM et al. Optimization of carotenoids production by yeast strains of Rhodotorula using salted cheese whey. International Journal of Current Microbiology and Applied Sciences. 2015;4(1):456-469.
  59. Kaulmann A, Bohn T. Carotenoids, inflammation, and oxidative stress-implications of cellular signaling pathways and relation to chronic disease prevention. Nutrition Research. 2014;34(11):907-929. doi: 10.1016/j.nutres.2014.07.010
  60. Kim J, DellaPenna D. Defining the primary route for lutein synthesis in plants: the role of Arabidopsis carotenoid beta-ring hydroxylase CYP97A3. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(9):3474-3479. doi: 10.1073/PNAS.0511207103
  61. Kobayashi M, Kakizono T, Nagai S. Astaxanthin production by a green alga, Haematococcus pluvialis accompanied with morphological changes in acetate media. J Ferm Bioeng. 1991;71(5):335-339. doi: 10.1016/0922-338X(91)90346-I
  62. Korumilli T, Susmita M. Carotenoid production by Rhodotorula sp. on fruit waste extract as a sole carbon source and optimization of key parameters. Iranian Journal of Chemistry & Chemical Engineering-International. 2014;33(3-71):89-99. doi: 30492/IJCCE.2014.11344
  63. Kot AM, Błażejak S, Kurcz A, Gientka I, et al. Rhodotorula glutinis — potential source of lipids, carotenoids, and enzyjmes for use in industries. Appl Microbiol Biotechnol. 2016;100(14):6103-6117. doi: 10.1007/s00253-016-7611-8
  64. Lascano GL, Heinrichs AJ. Rumen fermentation pattern of dairy heifers fed restricted amounts of low, medium, and high concentrate diets without and with yeast culture. Livestock Science. 2009;124(1-3):48-57. doi: 10.1016/j.livsci.2008.12.007
  65. Latha BV, Jeevaratnam K, Murali HS, Manja KS. Influence of growth factors on carotenoid pigmentation of Rhodotorula glutinis DFR-PDY from natural source. Indian Journal of Biotechnology. 2005;4(3):353-357.
  66. Lei Y, Kim I H. Effect of Phaffia rhodozyma on performance, nutrient digestibility, blood characteristics, and meat quality in finishing pigs. J Anim Sci. 2014;92(1):171-176. doi: 10.2527/jas.2013-6749
  67. Marova I, Certic  M,  Breierovа    Production  of  enriched  biomass  with carotenogenic yeast - Application  of  whole-cell  yeast  biomass to production of pigments and other lipid compounds. In:  Matovic D,  editor.  Biomass  -  detection,  production  and  usage.  Intech. 2011:345-384. doi: http://dx.doi.org/10.5772/19235
  68. Mata-Gómez LC, Montañez JC, Méndez-Zavala A, et al. Biotechnological production of carotenoids by yeast: an overview. Microb Cell Fact. 2014;13(1):12. doi: 10.1186/1475-2859-13-12
  69. Matilde С, Lippolis A, Fava F, Rodolfi L, et al. Microbes: Food for the Future. Foods. 2021;10(5):971. doi: 10.3390/foods10050971
  70. McGraw KJ, Beebee MD, Hill GE, Parker RS. Lutein-based plumage coloration in songbirds is a consequence of selective pigment incorporation into feathers. Comp Biochem Physiol B Biochem Mol Biol. 2003;135(4):689-696. doi: 10.1016/s1096-4959(03)00164-7
  71. Meyer SP. Developments in world aquaculture, formulations, and the role of carotenoids. Pure Appl Chem. 1994;66(5):1069-1076.
  72. Mihalcea A, Ferdes M, Chirvase AA, Ungureanu C, et al. The influence of operating conditions on the growth of the yeast Rhodotorula rubra ICCF 209 and on torularhodin formation. Rev Chim. (Bucharest). 2011;62(6):659–665.
  73. Moline M, Flores MR, Libkind D, del Carmen DM, Farias ME, van Broock M. Photoprotection by carotenoid pigments in the yeast Rhodotorula mucilaginosa: the role of torularhodin. Photochemical & Photobiological Sciences. 2010;9:1145-1151. doi: 10.1039/c0pp00009d
  74. Nozierea P, Graulet B,  Lucas A,  Martin B,  Grolier P,  Doreau M.  Carotenoids  for  ruminants:  From  forages  to  dairy    Animal  Feed  Sci  Technol.  2006;131(3-4):418-450. doi: 10.1016/j.anifeedsci.2006.06.018
  75. Ogunade IM, Lay J,  Andries K,  et al.  Effects  of  live  yeast  on  differential  genetic and  functional  attributes  of  rumen  microbiota  in  beef cattle. J Animal Sci Biotechnol. 2019;10:68. doi: 10.1186/s40104-019-0378-x
  76. Orranee S, Moonmanee T, Lumsangkul C, Doan HV, et al. Can red yeast (Sporidiobolus pararoseus) be used as a novel feed additive for mycotoxin binders in broiler chickens? Toxins. 2022;14(10):678. doi:10.3390/toxins14100678
  77. Pasarin D, Rovinaru C. Sources of carotenoids and their uses as animal feed additives- a review. Scientific Papers. Series D. Animal Science. 2018; LXI(2):74-85.
  78. Patterson R, Rogiewicz AG,   Kiarie E,   Slominski BA.   Yeast   derivatives  as  a  source  of  bioactive  components  in  animal  nutrition:  A  brief  Front  Vet  Sci.  2023;9:2022. doi: 10.3389/fvets.2022.1067383
  79. Perrier V, Dubreucq E, Galzy P. Fatty acid and carotenoid composition of Rhodotorula strains. Arch Microbiol. 1995;164(3):173-179. doi: 10.1007/BF02529968
  80. Rucker RB, Suttie JW, McCormick DB, Machlin LJ, editors. Handbook of Vitamins: 3rd ed. New York: Marcel Dekker, Inc; 2001. 616 p.
  81. Sarada R, Usha T, Ravishankar GA. Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions. Process Biochem. 2002;37(6):623-627. doi: 10.1016/S0032-9592(01)00246-1
  82. Somashekar D, Joseph R. Inverse relationship between carotenoid and lipid formation in Rhodotorula fracilis according to the C/N ratio of the growth medium. Word Journal of Microbiology & Biotechnology. 2000;16:491-493. doi: 10.1023/A:1008917612616
  83. Somboonchai T, Foiklang S, Panatuk J, et al. Replacement of soybean meal by red yeast fermented tofu waste on feed intake, growth performance, carcass characteristics, and meat quality in Thai Brahman crossbred beef cattle. Trop Anim Health Prod. 2022;54(2):133. doi: 10.1007/s11250-022-03127-5
  84. Song B, Wu T, You P, Wang H, Burke JL, Kang K, et al. Dietary supplementation of yeast culture into pelleted total mixed rations improves the growth performance of fattening lambs. Front Vet Sci. 2021;8:657816. doi: 10.3389/fvets.2021.657816
  85. Sporn MB, Dunlop NM, Newton DL, Smith JM. Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Fed Proc. 1976;35(6):1332-8.
  86. Sriphuttha C, Limkul S, Pongsetkul J, Phiwthong T, Massu A, Sumniangyen N, Boontawan P, Ketudat-Cairns M, Boontawan A, Boonchuen P. Effect of fed dietary yeast (Rhodotorula paludigena CM33) on shrimp growth, gene expression, intestinal microbial, disease resistance, and meat composition of Litopenaeus vannamei. Developmental and Comparative Immunology. 2023;147:104896. doi: 10.1016/j.dci.2023.104896
  87. Storebakken T, Sorensen M, Bjerkend B, Hiu S. Utilization of astaxanthin from red yeast, Xanthophyllomyces dendrorhous, in rainbow trout, Oncorhynchus mykiss: effects of enzymatic cell wall disruption and feed extrusion temperature. Aquaculture. 2004;236(1-4):391-403. doi: 10.1016/j.aquaculture.2003.10.035
  88. Sun J, Li M, Tang Z, Zhang X, Chen J, Sun Z. Effects of Rhodotorula mucilaginosa fermentation product on the laying performance, egg quality jejunal mucosal morphology and intestinal microbiota of hens. J Appl Microbiol. 2020;28 (1):54-64. doi: 10.1111/jam.14467
  89. Tang W, Wang Y, Zhang J, Cai Y, He Z. Biosynthetic pathway of carotenoids in rhodotorula and strategies for enhanced their production. J Microbiol Biotechnol. 2019;29(4):507-517. doi: 10.4014/jmb.1801.01022
  90. Tinoi J, Rakariyatham N, Deming RL. Simplex optimization of carotenoid production by Rhodotorula glutinis using hydrolyzed mung bean waste flour as substrate. Process Biochem. 2005;40(7):2551-2557. doi: 10.1016/j.procbio.2004.11.005
  91. Wang J, Zhao L, Liu J, Wang H, Xiao Sh. Effect of potential probiotic Rhodotorula benthica D30 on the growth performance, digestive enzyme activity and immunity in juvenile sea cucumber Apostichopus japonicas. Fish & Shellfish Immunology. 2015;43(2):330-336. doi: 10.1016/j.fsi.2014.12.028
  92. Wang L, Xie J, Wu W,  Li B, Ou J. Excellent microbial cultivation for astaxanthin production and its extraction by Rhodotorula benthica. Med Res. 2018;2(4):180015. doi: 10.21127/yaoyimr20180015
  93. Yang S-P, Wu Z-H, Jian J-Ch, Zhang X-Z. Effect of marine red yeast Rhodosporidium paludigenum on growth and antioxidant competence of Litopenaeus vannamei. Aquaculture. 2010;309(1-4):62-65. doi: 10.1016/j.aquaculture.2010.09.032
 

Information about the authors:

Maria V Dоvydenkova, Cand. Sci. (Agriculture), Researcher at the Microbiology Laboratory, Federal Research Center of Animal Husbandry – VIZ named after Academician L.K. Ernst, 60 Dubrovitsy village, Podolsk City district, Moscow region, 142132, tel.: 8(4967)651133.

Evgeniya N Kolodina, Cand. Sci. (Biology), Senior Researcher at the Microbiology Laboratory, Federal Research Center of Animal Husbandry – VIZ named after Academician L.K. Ernst, 60 Dubrovitsy village, Podolsk City district, Moscow region, 142132, tel.: 8(4967)651133.

Daria A Nikanova, Cand. Sci. (Biology), Senior Researcher at the Microbiology Laboratory, Federal Research Center of Animal Husbandry – VIZ named after Academician L.K. Ernst, 60 Dubrovitsy village, Podolsk City district, Moscow region, 142132, tel.: 8(4967)651133.

Tatiana I Logvinova, Cand. Sci. (Biology), Researcher at the Microbiology Laboratory, Federal Research Center of Animal Husbandry – VIZ named after Academician L.K. Ernst, 60 Dubrovitsy village, Podolsk City district, Moscow region, 142132, tel.: 8(4967)651133.

Olga A Artemieva, Cand. Sci. (Biology), Leading Researcher at the Microbiology Laboratory, Federal Research Center of Animal Husbandry – VIZ named after Academician L.K. Ernst, 60 Dubrovitsy village, Podolsk City district, Moscow region, 142132, tel.: 8(4967)651133.

The article was submitted 15.04.2024; approved after reviewing 23.04.2024; accepted for publication 10.06.2024.

Download