Olga S Romanenkova

Animal Husbandry and Fodder Production. 2024. Vol. 107, no 3. Р. 57-69.

doi:10.33284/2658-3135-107-3-57

Review article

Using housekeeping genes as references in assessing expression levels in chickens

 

Olga S Romanenkova1

1Federal Research Center for Animal Husbandry named after Academy Member LK Ernst, Dubrovitsy, Russia

1 eridpa@mail.ru, https://orcid.org/0000-0002-2682-6164

Abstract. Gene expression analysis through RT-qPCR provides insight into complex biological regulatory processes and is an important approach used in various molecular biology studies. The reliability and accuracy of RT-qPCR results depends on the reference genes used to normalize the expression level of the target gene. The so-called house keeping genes (HKG) are most often used as a reference. Housekeeping genes are essential for maintaining basal cellular function. They are expected to be stably expressed in all tissues and organs of the body under various conditions, regardless of developmental stage, sex or external stress factors. The purpose of this work is to provide overview information regarding genes used in molecular biology as reference genes when assessing the level of expression in various tissues and organs of chickens. The works of authors and research teams from Russia and various foreign countries regarding the nine most studied HKGs were reviewed. Despite the large number of studies conducted, there is no universal gene applicable to all experiments. For each specific case, it is necessary to select a suitable standard.

Keywords: chickens, housekeeping genes, qPCR, expression, GAPDH, HMBS, ACTB, 18SrRNA, TBP, YWHAZ, TFRC, HPRT1, SDHA

Acknowledgments: the work was performed in accordance to the plan of research works for 2024-2026 L.K. Ernst Federal Research Center for Animal Husbandry (No. FGGN-2024-0015).

For citation: Romanenkova OS. Using housekeeping genes as references in assessing expression levels in chickens (review). Animal Husbandry and Fodder Production. 2024;107(3):57-69. (In Russ.). https://doi.org/10.33284/2658-3135-107-3-57

References

 

  1. Barkova OYu. Analysis of LCORL gene expression in liver in contrast chicken breeds. Proceedings of Lower Volga Agro-University Complex: Science and Higher Education. 2023;1(69):383-390. doi: 10.32786/2071-9485-2023-01-42
  2. Barkova OYu, Vakhrameev AB.  The  genotype  and tissue related differences in the transcriptional activity of CR523443 sequence in Russian white chicken breed. Poultry Breeding. 2021;9:4-8. doi: 10.33845/0033-3239-2021-70-9-4-8
  3. Korobeinikova AV, Garber MB, Gongadze GM. Ribosomal proteins: structure, function, and evolution. Biochemistry. 2012;77(6):686-700.
  4. Кosova АА, Khodyreva SN, Lavrik OI. Role of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in DNA repair. Biochemistry. 2017;82(6):859-872.
  5. Wang XT, Cheng K,  Zhu L. Hypoxia accelerate β-actin expression through transcriptional  activation   of   ACTB   by   nuclear  respiratory  Factor-1.  Molecular  Biology.   2021;55(3):460-467. doi: 10.31857/S0026898421030186
  6. Bagés S, Estany J, Tor M, Pena RN. Investigating reference genes for quantitative real-time PCR analysis across four chicken tissues. Gene. 2015;561(1):82-87. doi: 10.1016/j.gene.2015.02.016
  7. Boo SY, Tan SW, Alitheen NB, et al. Identification of reference genes in chicken intraepithelial lymphocyte natural killer cells infected with very-virulent infectious bursal disease virus. Scientific Reports. 2020;10:8561. doi: 10.1038/s41598-020-65474-3
  8. Chapman JR, Waldenström J. With reference to reference genes: a systematic review of endogenous controls in gene expression studies. PLoS ONE. 2015;10(11):e0141853. doi: 10.1371/journal.pone.0141853
  9. Chen XY, Li R,  Wang M,  Geng ZY.  Identification  of  differentially  expressed  genes in  hypothalamus  of  chicken  during  cold  Molecular Biology Reports. 2014;41(4):2243-2248. doi: 10.1007/s11033-014-3075-z
  10. Dayan J, Melkman-Zehavi T, Goldman N, Soglia F, Zampiga M, Petracci M, Sirri F, Braun U, Inhuber V, Halevy O, Uni Z. In-ovo feeding with creatine monohydrate: implications for chicken energy reserves and breast muscle development during the pre-post hatching period. Frontiers in Physiology. 2023;14:1296342. doi: 10.3389/fphys.2023.1296342
  11. De Sousa FCB, do Nascimento CS, Macário MDS, et al. Selection of reference genes for quantitative real-time PCR normalization in European quail tissues. Molecular Biology Reports. 2021;48(1):67-76. doi: 10.1007/s11033-020-06134-7
  12. Di Pietro C, Ragusa M, Duro L, et al. Genomics, evolution, and expression of TBPL2, a member of the TBP family. DNA and Cell Biology. 2007; 26(6):369-85. doi: 10.1089/dna.2006.0527
  13. Dunislawska A, Slawinska A, Siwek M. Validation of the reference genes for the gene expression studies in chicken DT40 cell line. Genes (Basel). 2020; 11(4):372. doi: 10.3390/genes11040372
  14. Hasanpur K, Hosseinzadeh S,  Mirzaaghayi  A,  Alijani S.  Investigation  of  chicken housekeeping  genes  using  next-generation  sequencing  Frontiers in Genetics. 2022;13:827538. doi: 10.3389/fgene.2022.827538
  15. Hassanpour H, Aghajani Z, Bahadoran S, et al. Identification of reliable reference genes for quantitative real-time PCR in ovary and uterus of laying hens under heat stress. Stress. 2019;22(3):387-394. doi: 10.1080/10253890.2019.1574294
  16. Hassanpour H, Bahadoran S, Farhadfar, F et al. Identification of reliable reference genes for quantitative real-time PCR in lung and heart of pulmonary hypertensive chickens. Poultry Science. 2018;97(11):4048-4056. doi: 10.3382/ps/pey258
  17. Herrera-Sánchez MP, Lozano-Villegas KJ, Rondón-Barragán IS, et al. Identification of reference genes for expression studies in the liver and spleen of laying hens housed in cage and cage-free systems. Open Veterinary Journal. 2023;13(3):270-277. doi: 10.5455/OVJ.2023.v13.i3.3
  18. Hoyle AS, Menezes A C B, Nelson MA, Swanson K C, Vonnahme KA, Berg EP, Ward AK. Fetal expression  of  genes  related  to  metabolic  function  is  impacted  by  supplementation  of  ground beef  and  sucrose  during gestation in a swine model. Journal of Animal Science. 2020;98(8):skaa232. doi: 10.1093/jas/skaa232
  19. Hul LM, Ibelli AMG, Peixoto JdO, Souza MR, Savoldi IR, Marcelino DEP, et al. Reference genes for proximal femora lepiphysiolysis expression studies in broilers cartilage. Reference genes for proximal femoralepiphysiolysis expression studies in broilers cartilage. PLoS ONE. 2020;15(8):e0238189. doi: 10.1371/journal.pone.0238189
  20. Joshi CJ, Ke W, Drangowska-Way A, O'Rourke EJ, Lewis NE. What are housekeeping genes? PLoS Computational Biology. 2022;18(7):e1010295. doi: 10.1371/journal.pcbi.1010295
  21. Katarzyńska-Banasik D, Grzesiak M, Sechman A. Selection of reference genes for quantitative real-time PCR analysis in chicken ovary following silver nanoparticle treatment. Environmental Toxicology and Pharmacology. 2017;56:186-190. doi: 10.1016/j.etap.2017.09.011
  22. Khan S, Roberts J, Wu S. Reference gene selection for gene expression study in shell gland and spleen of laying hens challenged with infectious bronchitis virus. Scientific Reports. 2017;7:14271. doi: 10.1038/s41598-017-14693-2
  23. Kim H, Villareal LB, Liu Z, et al. Transferrin receptor-mediated iron uptake promotes colon tumorigenesis. Advanced Science. 2023;10(10):e2207693. doi: 10.1002/advs.202207693
  24. Kurniawan A, Natsir MH, Suyadi S, Sjofjan O, Nuningtyas YF, Ardiantoro A, Furqon A, Lestari SP. The effect of feeding with different protein levels on internal organ weight and gene expression of MEF2A and ATF3 in crossbred local chicken using RT-PCR. Journal of Genetic Engineering & Biotechnology. 2023; 21(1):83. doi: 10.1186/s43141-023-00533-6
  25. Lenart J, Kogut K, Salinska E. Lateralization of housekeeping genes in the brain of one-day old chicks. Gene Expression Patterns. 2017;25-26:85-91. doi: 10.1016/j.gep.2017.06.006
  26. Mitra T, Bilic I, Hess M, Liebhart D. The 60S ribosomal protein L13 is the most preferable reference gene to investigate gene expression in selected organs from turkeys and chickens, in context of different infection models. Veterinary Research. 2016;47:105. doi: 10.1186/s13567-016-0388-z
  27. Mogilicherla K, Athe RP, Chatterjee RN, Bhattacharya TK. Identification of suitable reference genes for normalization of quantitative real-time PCR-based gene expression in chicken (Gallus gallus). Animal Genetics. 2022;53(6):881-887. doi: 10.1111/age.13252
  28. Mozdziak PE, Dibner JJ, McCoy DW. Glyceraldehyde-3-phosphate dehydrogenase expression varies with age and nutrition status. Nutrition. 2003; 19(5):438-440. doi: 10.1016/s0899-9007(02)01006-7
  29. Na W, Wang Y, Gong P, et al. Screening of reference genes for RT-QPCR in chicken adipose tissue and adipocytes. Frontiers in Physiology. 2021;12:676864. doi: 10.3389/fphys.2021.676864
  30. Nascimento CS, Barbosa LT, Brito C, et al. Identification of suitable reference genes for Real Time quantitative polymerase chain reaction assays on pectoralis major muscle in chicken (Gallus gallus). PLoS ONE. 2015; 10(5):e0127935. doi: 10.1371/journal.pone.0127935
  31. Paludo E, Ibelli AMG,  Peixoto JO,  Tavernari FC, Lima-Rosa CAV, Pandolfi JRC, Ledur MC. The involvement of RUNX2 and SPARC genes in the bacterial chondronecrosis with osteomyelitis in broilers. Animal. 2017;11(6):1063-1070. doi: 10.1017/S1751731116002433
  32. Qin N, Shan X, Sun X, et al. Evaluation and validation of the six housekeeping genes for normalizing mRNA expression in the ovarian follicles and several tissues in chicken. Brazilian Journal of Poultry Science. 2020;22(03). doi: 10.1590/1806-9061-2019-1256
  33. Regassa A, Kim WK.  Transcriptome  analysis  of  hen  preadipocytes  treated  with  an adipogenic cocktail (DMIOA) with or without 20(S)-hydroxylcholesterol. BMC Genomics. 2015;16(1):91. doi: 10.1186/s12864-015-1231-z
  34. Renganathan VG, Renuka R, Vanniarajan C, Raveendran M, Elangovan A. Selection and validation of   reliable   reference   genes   for   quantitative   real-time   PCR   in  Barnyard  millet  (Echinochloa spp.)  under   varied   abiotic   stress    Scientific  Reports.  2023;13(1):15573. doi: 10.1038/s41598-023-40526-6
  35. Rodríguez-Hernández R, Oviedo-Rondón EO, Rondón- Barragán IS. Identification of reliable reference genes for expression studies in the magnum of laying hens housed in cage and cage- free systems. Veterinary Medicine and Science. 2021;7(5):1890-1898. doi: 10.1002/vms3.507
  36. Samiullah S, Roberts J, Wu SB. Reference gene selection for the shell gland of laying hens in response to time-points of eggshell formation and nicarbazin. PLoS One. 2017;12(7):e0180432. doi: 10.1371/journal.pone.0180432
  37. Sato H, Sugishima M, Tsukaguchi M, et al. Crystal structures of hydroxymethylbilane synthase complexed with a substrate analog: a single substrate-binding site for four consecutive condensation steps. The Biochemical Journal. 2021; 478(5):1023-1042. doi: 10.1042/BCJ20200996
  38. Simon Á, Jávor A, Bai P, Oláh J, Czeglédi L. Reference gene selection for reverse transcription quantitative polymerase chain reaction in chicken hypothalamus under different feeding status. Journal of Animal Physiology and Animal Nutrition. 2018;102(1):286-296. doi: 10.1111/jpn.12690
  39. Sławińska A, D'Andrea M, Pilla F, Bednarczyk M, Siwek M. Expression profiles of Toll-like receptors 1, 2 and 5 in selected organs of commercial and indigenous chickens. Journal of Applied Genetics. 2013;54(4):489-92. doi: 10.1007/s13353-013-0161-1
  40. Stadnicka K, Sławińska A, Dunisławska A, et al. Molecular signatures of epithelial oviduct cells of a laying hen (Gallus gallus domesticus) and quail (Coturnix Japonica). BMC Developmental Biology. 2018;18(1):9. doi: 10.1186/s12861-018-0168-2
  41. Wagner AJ, Remillard SP, Zhang YX, Doyle LA, George S, Hornick JL. Loss of expression of SDHA predicts SDHA mutations in gastrointestinal stromal tumors. Mod Pathol. 2013;26(2):289-94. doi: 10.1038/modpathol.2012.153
  42. Wan RP, Liu ZG,  Huang XF,  Kwan P,  Li YP,  Qu XC,  Ye XG,  Chen FY,  Zhang DW, He MF,  Wang J,  Mao YL,  Qiao JD.  YWHAZ  variation  causes  intellectual  disability  and  global   developmental   delay   with   brain  Human  Molecular  Genetics.  2023;32(3):462-472. doi: 10.1093/hmg/ddac210
  43. Wang Y, Zhang J, Patrick K, Li M, Gong J, Xu B, Shen Q, Yang Y, Wei L, Zhang Y, Peng D, Ye J, Poudel A, Wang C. Hydroxymethylbilane synthase (HMBS) gene-based endogenous internal control for avian species. AMB Express. 2020; 10(1):181. doi: 10.1186/s13568-020-01112-5
  44. White G, Tufton N, Akker SA. First-positive surveillance screening in an asymptomatic SDHA germline mutation carrier. Endocrinology, Diabetes & Metabolism Case Reports. 2019;2019(1):19-0005. doi: 10.1530/EDM-19-0005
  45. Wu T, Jiao Z, Li Y, Su X, Yao F, Peng J, Chen W, Yang A. HPRT1 promotes chemoresistance in oral squamous cell carcinoma via activating MMP1/PI3K/akt signaling pathway. Cancers (Basel). 2022;14(4):855. doi: 10.3390/cancers14040855
  46. Xiang W, Shang Y, Wang Q, et al. Identification of a chicken (Gallus Gallus) endogenous reference gene (ACTB) and its application in meat adulteration. Food Chemistry. 2017;1(234):472-478. doi: 10.1016/j.foodchem.2017.05.038
  47. Yang F, Lei X, Rodriguez-Palacios A, Tang C, Yue H. Selection of reference genes for quantitative real-time PCR analysis in chicken embryo fibroblasts infected with avian leukosis virus subgroup J. BMC Research Notes. 2013;6:402. doi: 10.1186/1756-0500-6-402
  48. Yang J, Mao Zh, Wang X, Zhuang J, Gong S, Gao Zh, Xu G, Yang N, Sun C. Identification of crucial genes and metabolites regulating the eggshell brownness in chicken. BMC Genomics. 2022;23(1):761. doi: 10.1186/s12864-022-08987-7
  49. Yin J, Wang X, Ge X, Ding F, et al. Hypoxanthine phosphoribosyl transferase 1 metabolizes temozolomide to activate AMPK for driving chemoresistance of glioblastomas. Nature Communications. 2023;14(1):5913. doi: 10.1038/s41467-023-41663-2
  50. Yin R, Liu X, Liu C, Ding Z, Zhang X, Tian F, Liu W, Yu J, Li L, Hrabé de Angelis M, Stoeger T. Systematic selection of housekeeping genes for gene expression normalization in chicken embryo fibroblasts infected with Newcastle disease virus. Biochemical and Biophysical Research Communications. 2011;413(4):537-40. doi: 10.1016/j.bbrc.2011.08.131
  51. Yuan ZW, Zhang XH,  Pang YZ,  Qi  YX,  Wang QK, Ren SW, Hu YQ, Zhao YW, Wang T, Huo LK. Screening of stably expressed internal reference genes for quantitative real-time PCR analysis in quail. Biology Bulletin. 2022;49(5):418-427. doi: 10.1134/S1062359022050223
  52. Yue H, Lei XW,  Yang FL, Li MY, Tang C. Reference gene selection for normalization of PCR analysis in chicken embryo fibroblast infected with H5N1 AIV. Virol Sin. 2010;25(6):425-431. doi: 10.1007/s12250-010-3114-4
  53. Zhao D, Wang X, Chen J, Huang Z, Huo H, Jiang C, Huang H, Zhang C, Wei S. Selection of reference genes for qPCR normalization in buffalobur (Solanum rostratum Dunal). Scientific Reports. 2019;9(1):6948. doi: 10.1038/s41598-019-43438-6

Information about the authors:

Olga S Romanenkova, Cand. Sci. (Biology), researcher, Laboratory of Molecular Genetics of Farm Animals, Federal Research Center for Animal Husbandry named after Academy Member LK Ernst, 60 Dubrovitsy, Podolsk district, Moscow region, 142132, cell: +7(4967)651102.

The article was submitted 10.07.2024; approved after reviewing 17.07.2024; accepted for publication 09.09.2024.

Download