Bardukov NV, Nikipelova AK, Otradnov PI, Nikipelov VI, Belous AA.

Animal Husbandry and Fodder Production. 2024. Vol. 107, no 4. Р. 106-119.

 

doi:10.33284/2658-3135-107-4-106

 

Original article

Determining the reliability of the origin of Siberian sturgeon based on the results of microsatellite analysis and genetic similarity coefficients

 

Nikolai V Bardukov1, Amina K Nikipelova2, Petr I Otradnov3, Vladislav I Nikipelov4,

Anna A Belous5

1,2,3,4,5Federal Research Center for Animal Husbandry named after Academy Member L.K. Ernst, Moscow region, Dubrovitsy, Russia

1bardukv-nikolajj@mail.ru, https://orcid.org/0000-0002-5497-2409

2nikipelova_aminavij@mail.ru, https://orcid.org/0009-0002-8248-7555

3deriteronard@gmail.com, https://orcid.org/0000-0002-1153-5815

4vladnikipelovvij@mail.ru, https://orcid.org/0009-0008-6411-2454

5belousa663@gmail.com, https://orcid.org/0000-0001-7533-4281

 

 Abstract. In the present study, a statistical approach to determining genetic similarity in tetraploid animals was developed using the example of aquacultured Siberian sturgeon. The feasibility of using genetic similarity parameters to determine kinship relations, in particular, to establish the maternal and paternal origin of individuals, was determined. Genetic profiles of the parental population and their offspring were obtained by analyzing 7 microsatellite loci. As a result of the validation study, it was revealed that the ancestral groups of individuals were correctly determined on average in 95.39% of cases with a range of values from 79.17 to 100% in different experimental samples. The created algorithm does not always allow to correlate parental individuals and descendants with 100% accuracy, but it can identify genetically close groups within the herd. Thus, the developed approach has a number of prospects for application both in genetic studies and in the breeding process.

Keywords: Siberian sturgeon, microsatellite loci, alleles, tetraploids, genetic similarity, kinship matrix

Acknowledgments: the work was carried out in accordance with the research plan for 2022-2024. FSBSI L.K. Ernst Federal Research Center for Animal Husbandry (No. FGGN-2022-0007).

We express our gratitude to the staff of RTF “Diana” Ltd. for conducting a series of experimental crosses performed for the purposes of this study.

For citation: Bardukov NV, Nikipelova AK, Otradnov PI, Nikipelov VI, Belous AA. Determining the reliability of the origin of Siberian sturgeon based on the results of microsatellite analysis and genetic similarity coefficients. Animal Husbandry and Fodder Production. 2024;107(4):106-119.  (In Russ.). https://doi.org/10.33284/2658-3135-107-4-106

 

References

 
  1. Barmintseva AE. Phylogeography and intraspecific genetic polymorphism of the Siberian sturgeon Acipenser baerii Brandt, 1869 in nature and aquaculture. [dissertation] Moscow; 2018:145 p.
  2. Akopyan NA, Kharzinova  VR,  Chydym  SM  et al. Genetic  analysis  of  mitochondrial  and nuclear  DNA  of  Kemerovo  pigs.  Animal  Husbandry and Fodder Production. 2019;4(102):132-137. doi: 10.33284/2658-3135-102-4-132
  3. Dodokhov VV. Polymorphism of DNA microsatellite loci in domestic reindeer of the Even breed. Animal Husbandry and Fodder Production. 2024;107(3):70-78. doi: 10.33284/2658-3135-107-3-70
  4. Malyutin VC, Ruban GI. On the history of fish husbandry of siberian sturgeon Acipenser baerii from the Lena river for acclimatization and commercial cultivation. Journal of Ichthyology. 2009;49(3):389-395.
  5. Bardukov NV, Nikipelova AK, Nikipelov VI, Belous AA, Zinovieva NA. Methodological recommendations for molecular genetic expertise of pedigree material of Siberian sturgeon (Acipenser baerii) bred in commercial aquaculture. Dubrovitsy: FSBSI FRC AH named after L.K. Ernst; 2024:32 p.
  6. Mugue NS, Barmintseva AE. Genomic research for sturgeon conservation: analysis of the inheritance of polyploid loci and the development of a marker panel to identify sturgeon hybrids and their products. Russian Foundation for Basic Research Journal. 2020;2(106):78-87. doi: 10.22204/2410-4639-2020-106-02-78-87
  7. Otradnov PI, Rudiyanov DM, Belous AA. Validation of breeding value estimates for duroc pigs by feeding behavior traits. Pigbreeding. 2023;5:22-26. doi: 10.37925/0039-713X-2023-5-22-26
  8. Abdel'manova AS, Fornara MS, Bardukov NV, et al. Whole genome study of single nucleotide polymorphisms’ associations with withers height in local and transboundary breeds in Russia. Selskokhozyaystvennaya biologiya [Agricultural Biology]. 2021;56(6):1111-1122. doi: 10.15389/agrobiology.2021.6.1099eng
  9. Bardukov NV, Nikipelova AK, Belous AA, Zinovieva NA. Development of multiplex panel of microsatellites for genetic studies of Siberian sturgeon (Acipenser baerii) bred in commercial aquaculture. Selskokhozyaistvennaya biologiya [Agricultural biology]. 2023;58(6):1057-1067. doi: 10.15389/agrobiology.2023.6.1057eng
  10. Aguilar I, Misztal I, Johnson DL, Legarra A, et al. Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. Journal of Dairy Science. 2010;93(2):743-752. doi: 10.3168/jds.2009-2730
  11. Bronzi P, Rosenthal H, Gessner J. Global sturgeon aquaculture production: an overview. Journal of Applied Ichthyology. 2011;27:169-175. doi: 10.1111/j.1439-0426.2011.01757.x
  12. Clark LV, Jasieniuk M. POLYSAT: an R package for polyploid microsatellite analysis. Molecular Ecology Resources. 2011;11(3):562-566. doi: 10.1111/j.1755-0998.2011.02985.x
  13. Cui X, Li C, Qin S, Huang Z, Gan B, Jiang Z, Huang X, Yang X, Li Q, Xiang X, Chen J, Zhao Y, Rong J. High-throughput  sequencing-based  microsatellite  genotyping  for  polyploids to resolve allele  dosage  uncertainty  and  improve  analyses  of  genetic  diversity,  structure  and  differentiation: A case  study  of  the  hexaploidy Camellia oleifera. Molecular Ecology Resources. 2022;22(1):199-211. doi: 10.1111/1755-0998.13469
  14. Edwards A, Civitello A, Hammond HA, Caskey CT. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. American Journal of Human Genetics. 1991;49(4):746-75.
  15. Georgescu SE, Canareica O, Popa G, Dudu A, Costache M. Characterization of five microsatellites in the Siberian sturgeon Acipenser baerii from aquaculture. Journal of Animal Science and Biotechnology. 2013;46(1):95-98.
  16. Hardy OJ, Vekemans X. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the   individual   or   population   levels.   Molecular   Ecology   Notes. 2002;2:618-620. doi: 10.1046/j.1471-8286.2002.00305.x
  17. Havelka M, Hulak M, Bailie DA, Prodohl PA, Flajshans M. Extensive genome duplications in sturgeons: New evidence from microsatellite data. Journal of Applied Ichthyology. 2013;29:704-708. doi: 10.1111/jai.12224
  18. Kohlmann K, Kersten P, Geßner J, Eroglu O, Firidin S, Ciorpac M, Suciu R. Validation of 12 species-specific, tetrasomic microsatellite loci from the Russian sturgeon, Acipenser gueldenstaedtii, for genetic broodstock management. Aquaculture International. 2018;26:1365-1376. doi: 10.1007/s10499-018-0290-y
  19. Kohlmann K, Kersten P, Geßner J, Onara D, Taflan E, Radu S. New microsatellite multiplex PCR sets for genetic studies of the sterlet sturgeon, Acipenser ruthenus. Environmental Biotechnology. 2017;13:11-17. doi: 10.14799/ebms285
  20. Markwith SH, Stewart DJ, Dyer JL. TETRASAT: A program for the population analysis of allotetraploid microsatellite data. Molecular Ecology Notes. 2006;6:586-589.
  21. Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker map. Genetics. 2001;157(4):1819-1829. doi: 10.1093/genetics/157.4.1819
  22. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945-959. doi: 10.1093/genetics/155.2.945
  23. R Core Team. [Internet] R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Austria, Vienna, 2024. Available from: https://www.R-project.org/ (accessed 22.09.2024)
  24. Ruban GI, Mugue NS. [Internet] Acipenser baerii. The IUCN Red List of Threatened Species. 2022: e.T244A156718817. Available from: https://dx.doi.org/10.2305/IUCN.UK.2022-1.RLTS.T244A156718817.en (accessed 10.09.2024)
  25. Webster MS, Reichart L. Use of microsatellites for parentage and kinship analyses in animals. Methods in Enzymology. 2005;395:222-238. doi: 10.1016/S0076-6879(05)95014-3
  26. Zane L, Patarnello T, Ludwig A,  et  al. Isolation and characterization of microsatellites in the Adriatic sturgeon (Acipenser naccarii). Molecular Ecology Notes. 2002;2(4):586-588. doi: 10.1046/j.1471-8286.2002.00328.x.
  27. Zhu S, Guo T, Yuan C, Liu J, et al. Evaluation of Bayesian alphabet and GBLUP based on different marker density for genomic prediction in Alpine Merino sheep. G3 Genes/Genomes/Genetics. 2021;11(11). doi: 10.1093/g3journal/jkab206
 

 Information about the authors:

Nikolai V Bardukov, Researcher, Federal Research Center for Animal Husbandry named after Academy Member L.K. Ernst, Moscow region, Podolsk, Dubrovitsy, 60, 142132, tel.: +79850404028.

Amina K Nikipelova, Junior Researcher, Federal Research Center for Animal Husbandry named after Academy Member L.K. Ernst, Moscow region, Podolsk, Dubrovitsy, 60, 142132, tel.: +79850404028.

Petr I Otradnov, Junior Researcher, Federal Research Center for Animal Husbandry named after Academy Member L.K. Ernst, Moscow region, Podolsk, Dubrovitsy, 60, 142132, tel.: +79850404028

Vladislav I Nikipelov, Junior Researcher, Federal Research Center for Animal Husbandry named after Academy Member L.K. Ernst, Moscow region, Podolsk, Dubrovitsy, 60, 142132, tel.: +79850404028.

Anna A Belous, Cand. Sci. (Biology), Senior Researcher, Federal Research Center for Animal Husbandry named after Academy Member L.K. Ernst, Moscow region, Podolsk, Dubrovitsy, 60, 142132,  tel.: +79850404028.

 

The article was submitted 11.10.2024; approved after reviewing 21.11.2024; accepted for publication 16.12.2024.

Download