Vetokh AN, Volkova NA, Larionova PV, Dzhagaev AYu, Abdelmanova AS, Zinovieva NA.

Animal Husbandry and Fodder Production. 2024. Vol. 107, no 4. Р. 94-105.

 

doi:10.33284/2658-3135-107-4-94

 

Original article

Genome-wide association studies of meat color indicators

in the F2 chickens resource population

 

Anastasia N Vetokh1, Natalia A Volkova2, Polina V Larionova3, Alan Yu Dzhagaev4, Alexandra S Abdelmanova5, Natalia A Zinovieva6

1,2,3,4,5,6 Federal Research Center for Animal Husbandry named after Academy Member L.K. Ernst, Moscow region, Dubrovitsy, Russia

1anastezuya@mail.ru, https://orcid.org/0000-0002-2865-5960,

2natavolkova@inbox.ru, https://orcid.org/0000-0001-7191-3550,

3volpolina@mail.ru, https://orcid.org/0000-0001-5047-1888,

4alan_dz@inbox.ru, https://orcid.org/0000-0001-7818-0142

5preevetic@mail.ru, https://orcid.org/0000-0003-4752-0727,

6n_zinovieva@mail.ru, https://orcid.org/0000-0003-4017-6863

 

Abstract. The aim of the study was to search for SNPs and identify candidate genes associated with color characteristics of chicken meat. The object of the research was F2 chickens of the resource population obtained through interbreeding of two breeds with contrasting meat productivity indicators - Russian White and Cornish. The obtaining resource population of chickens was phenotyped at the age of 42 days for breast and thigh meat color according to the a*, b* and L* color scale using a spectrophotometer, and genotyped using the Illumina Chicken iSelect BeadChip 60k DNA chip. The GWAS identified   30 significant SNPs (P≤0.0001) associated with meat color in F2 chickens of the resource population, including 12 SNPs associated with breast muscle color traits and 18 SNPs associated with thigh color parameters. The 214 genes were identified in the SNPs region, including 10 genes at the positions of these SNPs - BRAF, ENO2, UBE3D, RGS6, ATP13A3, RHBDD1, MB21D2, BHLHE23, PIAS4, and MLLT1, localized on chromosomes GGA1, GGA3, GGA5, GGA9, GGA20 and GGA28. The results have practical significance for understanding the molecular genetic mechanisms in the formation and manifestation of traits that determine the color characteristics of chicken meat and can be used in subsequent studies in genomic selection of chickens to improve the quality of meat.

Keywords: chickens, meat color, SNP, candidate genes, genome-wide association studies

Acknowledgments: the work was performed in accordance to the plan of research works for 2023-2025 L.K. Ernst Federal Research Center for Animal Husbandry (No. FGGN-2023-0002).

For citation: Vetokh AN, Volkova NA, Larionova PV, Dzhagaev AYu, Abdelmanova AS, Zinovieva NA. Genome-wide association studies of meat color indicators in young F2 chickens resource population. Animal Husbandry and Fodder Production. 2024;107(4):94-105. (In Russ). https://doi.org/10.33284/2658-3135-107-4-94

 

References

                                                                                
  1. State Standard R 52837-2007. Slaughter poultry. Specifications approved. Implementation date 01.01.2009. Moscow: Standartinform; 2008:5 p.
  2. Grechkina VV, Lebedev SV. The effect of Tsamax and Vetom on the biochemical parameters of blood and the mineral content in the body of broiler chickens. Animal Husbandry and Fodder Production. 2022;105(2):118-129. https://doi.org/10.33284/2658-3135-105-2-118
  3. Dorokhin NA. Quality characteristics of broiler chicken meat and their influencing factors: an overview. Agricultural Journal. 2020;5(13):59-64.
  4. Tuzikov RA, Lebedev SV, Arinzhanova MS, Sheida EV. The influence of biomineral complex on the growth, productive traits in broiler chickens. Animal Husbandry and Fodder Production. 2023;106(3):138-147. https://doi.org/10.33284/2658-3135-106-3-138
  5. Vetokh AN, Dzhagaev AYu, Belous AA, Volkova NA, Zinovieva NA. Genome-wide association studies of  chicken  (Gallus gallus L.) breast meat color characteristics. Sel’skokhozyaistvennaya biologiya  [Agricultural Biology].  2023;58(6):1068-1078. doi: 10.15389/agrobiology.2023.6.1068eng
  6. Volkova NA, Vetokh AN, Belous AA, Zinovieva NA. Genome-wide association studies of color characteristics of chicken meat. Veterinary Medicine and Feeding. 2024;5:22-26. doi: 10.30917/ATT-VK-1814-9588-2024-5-5
  7. Kozyrev IV, Mittelstein TM,  Pchelkina  VA,  Lisitsyn AB. Technological  properties  of chilled   beef  of  various  color  Theory  and  Practice  of  Meat   Processing. 2017;2(2):60-68. doi: 10.21323/2414-438X-2017-2-2-60-68
  8. Allais S, Hennequet-Antier C, Berri C, Salles L, Demeure O, Le Bihan-Duval E. Mapping of QTL for chicken body weight, carcass composition, and meat quality traits in a slow-growing line. Poultry Science. 2019;98(5):1960-1967. doi: 10.3382/ps/pey549
  9. Alnahhas N, Berr C, Chabault M, et al. Genetic parameters of white striping in relation to body weight, carcass composition, and meat quality traits in two broiler lines divergently selected for the ultimate pH of the pectoralis major muscle. BMC Genet. 2016;17:61. doi: 10.1186/s12863-016-0369-2
  10. An B, Xia J, Chang T, Wang X, Miao J, Xu L, Zhang L, Gao X, Chen Y, Li J, et al. Genome-wide association study identifies loci and candidate genes for internal organ weights in Simmental beef cattle. Physiological Genomics. 2018;50(7):523-531. doi: 10.1152/physiolgenomics.00022.2018
  11. Bowker B. Chapter 4 -  Developments  in  our  understanding  of  water-holding    In:  Petracci M, Berri C, editors. Poultry Quality Evaluation. Woodhead Publishing; 2017:77-113. doi: 10.1016/B978-0-08-100763-1.00004-0
  12. Che S, Susta L, Barbut S. Effects of broiler chilling methods on the occurrence of pale, soft, exudative (PSE) meat and comparison of detection methods for PSE meat using traditional and Nix colorimeters. Poultry Science. 2023;102(10):102907. doi: 10.1016/j.psj.2023.102907
  13. Karunanayaka DS, Jayasena DD, Jo C. Prevalence of pale, soft, and exudative (PSE) condition in chicken meat used for commercial meat processing and its effect on roasted chicken breast. Journal of Animal Science Technology. 2016;58:27. doi: 10.1186/s40781-016-0110-8
  14. Kudryashova OA, Kudryashov LS. Influence of preslaughter stress on poultry meat. Theory and Practice of Meat Processing. 2022;7(1):30-34. doi: 10.21323/2414-438X-2022-7-1-30-34
  15. Marín-Garzón NA, Magalhães AFB, Mota LFM, Fonseca LFS, Chardulo LAL, Albuquerque LG. Genome-wide association study identified genomic regions and putative candidate genes affecting meat color traits in Nellore cattle. Meat Science. 2021;171:108288. doi: 10.1016/j.meatsci.2020.108288
  16. Mashood Q, Karlsson A H, Wallenbeck A, Eriksson S, Johansson AM, Segerkvist KA. A review on pale, soft, and exudative (PSE)-like zones in pork: current knowledge on underlying factors and identification of knowledge gaps for further research. Acta Agriculturae Scandinavica, Section A — Animal Science. 2023:1-10. doi: 10.1080/09064702.2023.2279079
  17. Mir NA, Rafiq A, Kumar F, et al. Determinants  of  broiler  chicken  meat  quality and   factors   affecting  them: a  Journal  of  Food  Science   Technology. 2017;54:2997-3009. doi: 10.1007/s13197-017-2789-z
  18. Niu Q, Zhang T, Xu L, Wang T, Wang Z, Zhu B, Zhang L, Gao H, Song J, Li J, Xu L. Integration of selection signatures and multi-trait GWAS reveals polygenic genetic architecture of carcass traits in beef cattle. Genomics. 2021; 113(5):3325-3336. doi: 10.1016/j.ygeno.2021.07.025
  19. Tian J, Zhu X,  Wu H,  Wang Y,  Hu X.  Serum  metabolic  profile  and  metabolome genome-wide  association  study in chicken. Journal of Animal Science Biotechnology. 2023;14(1):69. doi: 10.1186/s40104-023-00868-7
  20. Török Á, Yeh CH, Menozzi D, et al. Consumers' preferences for processed meat: a best–worst scaling approach in three European countries. Agricultural and Food Economics 2023;11:33 doi: 10.1186/s40100-023-00277-4
  21. Turner SD. QQman: an R package for visualizing GWAS results using Q-Q and Manhattan plots. The Journal of Open Source Software. 2018;3(25):731. doi: 10.21105/joss.00731
  22. Volkova NA, Romanov MN, Vetokh AN, Larionova PV, Volkova LA, Abdelmanova AS, Sermyagin AA, Griffin DK, Zinovieva NA. Genome-wide association study reveals the genetic architecture of growth and meat production traits in a chicken F2 resource population. 2024;15(10):1246. doi: 10.3390/genes15101246
  23. Walugembe M, Mushi JR, Amuzu-Aweh EN, Chiwanga GH, Msoffe PL, Wang Y, Saelao P, Kelly T, Gallardo RA, Zhou H, Lamont SJ, Muhairwa AP, Dekkers JCM. Genetic analyses of tanzanian local chicken ecotypes challenged with newcastle disease virus. Genes (Basel). 2019;10(7):546. doi: 10.3390/genes10070546
 

Information about the authors:

Anastasia N Vetokh, Researcher Of The Cell Engineering Laboratory, Federal Research Center for Animal Husbandry named after Academy Member L.K. Ernst, Podolsk, Dubrovitsy, 60, 142132, tel.: +7 (4967) 65-11-63.

Natalia A Volkova, Dr. Sci (Biology), Professor of the Russian Academy of Sciences, Head of the the cell engineering laboratory, Federal Research Center for Animal Husbandry named after Academy Member L.K. Ernst, Podolsk, Dubrovitsy, 60, 142132, tel.: +7 (4967) 65-11-63.

Polina V Larionova, Cand. Sci (Biology), Main Expert Of The Cell Engineering Laboratory, Federal Research Center for Animal Husbandry named after Academy Member L.K. Ernst, Podolsk, Dubrovitsy, 60, 142132, tel.: +7 (4967) 65-11-63.

Alan Yu Dzhagaev, Junior Researcher Of The Cell Engineering Laboratory, Federal Research Center for Animal Husbandry named after Academy Member L.K. Ernst, Podolsk, Dubrovitsy, 60, 142132, tel.: +7 (4967) 65-11-63.

Alexandra S Abdelmanova, Dr. Sci (Biology), senior researcher in the laboratory of functional and evolutionary genomics of animals, Federal Research Center for Animal Husbandry named after Academy Member L.K. Ernst, Podolsk, Dubrovitsy, 60, 142132, tel.: +7 (4967) 65-11-63.

Natalia A Zinovieva, Dr. Sci (Biology), Academician of Russian Academy of Sciences, Director, Federal Research Center for Animal Husbandry named after Academy Member L.K. Ernst, Podolsk, Dubrovitsy, 60, 142132, tel.: +7 (4967) 65-11-63.

 

The article was submitted 01.10.2024; approved after reviewing 26.11.2024; accepted for publication 16.12.2024.

Download