Podlasova ЕYu, Novikova АА.

Animal Husbandry and Fodder Production. 2024. Vol. 107, no 4. Р. 337-346.

doi:10.33284/2658-3135-107-4-337

 

Original article

Analysis of chlorophyll content in spring barley leaves using hyperspectral imaging

and spectrophotometry

 

Ekaterina Yu Podlasova1, Antonina A Novikova2

1,2Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia

1katerina.pryakhina@mail.ru, https://orcid.org/0000-0002-2985-198X

2tony-novikova@yandex.ru, https://orcid.org/0000-0002-6947-9262

 

Abstract. The article presents the results of research on the search for universal vegetation indices on spring barley plants grown on a hydroponic system in a closed climate chamber. Using a spectrophotometer, the concentrations of chlorophyll in the leaves of spring barley during the tillering phase ranged in chlorophyll Cl a from 0.17 to 0.35 mg/cm2, chlorophyll Cl b from 0.11 to 0.31 mg/cm2, chlorophyll Cl a+b from 0.11 to 0.25 mg/cm2 and carotenoids (Car) from 0.11 to 0.19 mg/cm2.   To quantify the chlorophyll content, several vegetation indices were derived, calculated on the basis of the reflection coefficient at certain wavelengths.  By collecting spectral images of spring barley leaves and using Spearman correlation, we found a close correlation between CVI and OSAVI indices with Cl a+b at r2= 0.93 and r2= 0.91. This work has shown that the use of vegetation indices is promising for assessing the content of photosynthetic pigments in the leaves of spring barley. Thus, hyperspectral assessment can be used as a non-destructive and effective method in selection and seed production of this crop.

Keywords: spring barley (Hordeum vulgare), spectrophotometry, vegetation index, chlorophyll, hyperspectral analysis

Acknowledgements: the work was performed in accordance to the plan of research works for 2024-2026 FSBSI FRC BST RAS (No. FNWZ-2024-0007).

For citation: Podlasova ЕYu, Novikova АА. Analysis of chlorophyll content in spring barley leaves using hyperspectral imaging and spectrophotometry. Animal Husbandry and Fodder Production. 2024;107(4):337-346. (In Russ.). https://doi.org/10.33284/2658-3135-107-4-337

 

References

 
  1. Besaliev IN, Panfilov AL. Duration and conditions of interphase periods of vegetation as productivity factors of spring wheat varieties in Orenburg Cis-Urals. Animal Husbandry and Fodder Production. 2023;106(3):202-212. https://doi.org/33284/2658-3135-106-3-202
  2. Alt VV, Gurova TA, Elkin OV, Klimenko DN, Maksimov LV, Pestunov IA, Dubrovskaya OA, Genaev MA, Erst TV, Genaev KA, Komyshev EG, Khlestkin VK, Affonikov DA. The use Specim IQ a hyperspectral camera for plant analysis. Vavilov Journal of Genetics and Breeding. 2020;24(3):259-266. doi: 10.18699/VJ19.587
  3. Zolotukhina AA, Guryleva AV,  Gresis  VO,  Dekhkanova  KR,  Polyakova  SS, Nesterov GV, Platonova NB. Multi-crop determination of chlorophyll concentration using imaging spectroscopy (Conference proseedings) Acoustooptic and Radar Methods for Information Measurements and Processing: Proceedings of the XVI International Scientific and Technical Conference (Suzdal', 09-12 October 2023). Moscow: STC UI RAS; 2023:394-398.
  4. Korotkova AM, Lebedev SV, Kvan OV, Atlanderova KN. Evaluation of ultrafine particles influence on biometric parameters of wheat germs. Animal Husbandry and Fodder Production. 2019;102(2):7-20. doi: 10.33284/2658-3135-102-2-7
  5. Ignatova MA, Kozlovsky BL, Dmitrieva AA, Varduny TV, Dmitriev PA. Assessment of the seasonal dynamics of photosynthetic pigments in maple leaves using vegetation indices calculated from hyperspectral survey data. AgroEcoInfo: Electronic science-productive magazine. 2024:2. doi:10.51419/202142206
  6. Novikova AA, Emelyanova AA, Pustovalova AA, Grechishkina OS, Mishenina TA, Zamerzlyak MV. Assessment of ecological plasticity and stability of spring barley varieties by yield in the conditions of Orenburg region. Animal Husbandry and Fodder Production. 2022;105(4):220-231. https://doi.org/10.33284/2658-3135-105-4-220
  7. Smashevsky ND. Practical training in plant physiology: a textbook. Astrakhan: Astrakhan State University, Publishing House "Astrakhan University"; 2011:77 p.
  8. Arief MAA, Kim H, Kurniawan H, Nugroho AP, Kim T, Cho BK. Clorophyll fluorescence imaging for early detection of drought and stress in strawberry plants. Plants. 2023;12(6):1387. doi:10.3390/plants12061387
  9. Blackmer TM, Shepers JS, Varvel G V. Light reflectance compared with other nitrogen stress measurements in corn leaves. Agronomy Journal. 1994;86(6):934-938.
  10. Dai W, Girdthai T, Huang Z, Ketudat-Cairns M, Tang R, Wang S. Genetic analysis for anthocyanin and chlorophyll contents in rapeseed. Cienc Rural. 2016;46(5);790-795. doi: 10.1590/0103-8478CR20150564
  11. Daughtry CST, Walthall CL, Kim MS, De Colstoun EB, McMurtrey JE III. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens Environ. 2000;74(2):229-239. doi: 10.1016/S0034-4257(00)00113-9
  12. El-Hendawi S, Elsayed S,  Al-Suhaibani N,  Alotaibi M, Tahir MU, Mubushar M, Attiyah A, Hassan VM. Using hyperspectral imaging to assess the growth and content of chlorophyll in spring wheat grown under simulated soil salinity. Plants. 2021;10: doi: 10.1038/s41598-019-52802-5
  13. Haboudane D, Miller JR, Tremblay N, Zarco-Tejada PJ, Dextraze L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens Environ. 2002;81:416-426. doi: 1016/S0034-4257(02)00018-4
  14. Koch JCO, Banerjee BP, Spangenberg G, Kant S. Automated hyperspectral vegetation index derivation using a hyperparameter optimisation framework for high-throughput plant phenotyping. New Phytol. 2022;233(6):2659-2670. doi: 10.1111/NPH.17947
  15. Kooistra L, Clevers JGPW. Estimating potato leaf chlorophyll content using ratio vegetation indices. Remote Sensing Letters. 2016;7(6):611-620. doi: 1080/2150704X.2016.1171925
  16. Qiao L, Tang W, Gao D, Zhao R, An L, Li M, et al. UAV-based chlorophyll content estimation by evaluating vegetation index responses under different crop coverages. Computers and Electronics in Agriculture. 2022;196:106775. doi: 10.1016/J.COMPAG.2022.106775
  17. Qingfeng S, Fusang L, Hongyi B, Xin-Guang Z. Quantifying contributions of different factors to canopy photosynthesis in 2 maize varieties: development of a novel 3D canopy modeling pipeline. Plant Phenomics. 2023;5: 0075. doi: 10.34133/plantphenomics.0075
  18. Shan L, Fan L, Wenqiang Y, Zheyi W, Yu L, Kenji O. A robust vegetation index for remotely assessing chlorophyll content of dorsiventral leaves across several species in diferent seasons. Plant Methods. 2018;14:15. doi: 1186/s13007-018-0281-z
  19. Taha MF, Mao H, Wang Y, ElManawy AI, Elmasry G, Wu L, Memon MS, Niu Z, Huang T, Qiu Z. High-throughput analysis of leaf chlorophyll content in aquaponically grown lettuce using hyperspectral reflectance and RGB images. 2024;13(3):392. doi: 10.3390/plants13030392
  20. Vincini M, Frazzi E, D’Alessio P. A broad-band leaf chlorophyll vegetation index at the canopy scale. Precis Agric. 2008;9:303-319. doi: 10.1007/s11119-008-9075-z
  21. Wang H, Shi R, Liu PD, Gao W. The study of vegetation indices for the monitoring of differences in chlorophyll and carotenoid composition in green vegetables. The International Society for Optical Engineering. 2016;36(7):2189-2194. doi: 10.3964/j.issn.1000-0593(2016)07-2189-06
  22. Zhang H, Ge Y, Xie X, et al. High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion. Plant Methods. 2022;18:60. doi: 1186/s13007-022-00892-0
  23. Zolotukhina A, Machikhin A, Guryleva A, Gresis V, Tedeeva V. Extraction of chlorophyll concentration  maps  from  AOTF  hyperspectral imagery. Front Environ Sci. 2023;11:1152450. doi: 3389/fenvs.2023.1152450
 

Information about the authors:

Ekaterina Yu Podlasova, Cand. Sci. (Agriculturе), Junior Researcher at the Laboratory of Breeding and Genetic Research in Crop Production, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 27/1 Gagarin Ave., Orenburg, 460051, tel.: 89877866593.

Antonina A Novikova, Cand. Sci. (Agriculture), Head of the Laboratory of Breeding and Genetic Research in Crop Production, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 27/1 Gagarin Ave., Orenburg, 460051, tel.: 89228884481.

The article was submitted 10.10.2024; approved after reviewing 21.11.2024; accepted for publication 16.12.2024.

Download