Miroshnikova EP, Arinzhanovа MS, Arinzhanov AЕ, Miroshnikov SA.

Animal Husbandry and Fodder Production. 2024. Vol. 107, no 4. Р. 10-30.

 

doi:10.33284/2658-3135-107-4-10

 

Original article

Use of SiO2 nanoparticles preparation in carp feeding

 

Elena P Miroshnikova1, Maria S Arinzhanova2, Azamat E Arinzhanov3, Sergey A Miroshnikov4

1,3,4Orenburg State University, Orenburg, Russia

2Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia

1elenaakva@rambler.ru, https://orcid.org/0000-0003-3804-5151

2marymiroshnikova@mail.ru, https://orcid.org/0000-0003-1898-9307

3arin.azamat@mail.ru, https://orcid.org/0000-0001-6534-7118

4rector_osu@mail.osu.ru, https://orcid.org/orcid.org/0000-0003-1173-1952

 

Abstract. A series of studies were performed to evaluate the biological properties and productive action of a silicon dioxide nanoparticle preparation (NPS SiO2) on a carp model. The NPS SiO2 preparation obtained by plasma-chemical synthesis was used (d=126.5±9.7 nm, Z-potential - 29±0.1 mV). The NPS  SiO2  preparation  was  characterized  by  the  absence  of toxicity in the range from 1.5•10-5 to 5•10-1 g/l (Escherichia  coli  K12  TG1  biosensor  model). The  effect  of  NPS  SiO2 in three dosages (100, 200, 300 mg/kg of feed) on the productivity and metabolism in the carp body was studied. The optimal dosage of NPS SiO2 was established, amounting to 200 mg/kg. When including NPS SiO2 in a complete feed with a crude protein content of 23%, the fact of increasing the intensity of carp growth by 10.2 - 14.1% was established. At the same time, an increase in the content of total protein in the blood serum of fish and an increase in the content of a number of amino acids in the liver of carp were established. In the second experiment, the productivity and metabolism of mineral substances in carp were studied with joint feeding of NPS SiO2 and amino acids (lysine, mytheonine, arginine).

Keywords: carp, feeding, nanoparticles, silica, chemical elements, amino acids

Acknowledgments: The work was supported by the Ministry of Science and Higher Education of Russia, project No. 075-15-2024-550.

For citation: Miroshnikova EP, Arinzhanovа MS, Arinzhanov AЕ, Miroshnikov SA. Use of SiO2 nanoparticles preparation in carp feeding. Animal Husbandry and Fodder Production. 2024;107(4):10-30. (In Russ.). https://doi.org/10.33284/2658-3135-107-4-10

 

References

 
  1. Miroshnikov SA, Mustafina AS, Gubaidullina IZ. Evaluation of action of ultrafine silicon oxide on the body of broiler chickens. Animal Husbandry and Fodder Production. 2020;103(1):20-32. doi: 10.33284/2658-3135-103-1-20
  2. Musabayeva LL, Sizova EA. The effectiveness of silicon-containing additive "Silaccess" in feeding broiler chickens. Animal Husbandry and Fodder Production. 2022;105(1):82-91. doi: 10.33284/2658-3135-105-1-82
  3. Musabaeva LL, Sizova EA, Nechitailo KS. Comparative assessment of the effect of the feed additive  Silaccess  based  on  flaxseed  cake  and  zeolite  on  digestibility  and  morphological parameters  of  broiler chickens. Animal Husbandry and Fodder Production. 2024;107(1):118-127. doi: 10.33284/2658-3135-107-1-118
  4. Mustafin RZ, Mustafina AS. Determination of the rational dose of silicon dioxide in the feeding  of  broiler  Animal Husbandry and Fodder Production. 2021;104(1):8-19. doi: 10.33284/2658-3135-104-1-8
  5. Kamirova AM, Sizova EA, Ivanishcheva AP, Shoshin DE, Yausheva EV. The organic mineral complex based on ultrafine silicon-containing particles as a microbiome modulator of gastrointestinal tract of cattle. Animal Husbandry and Fodder Production. 2024;107(2):13-26. doi: 10.33284/2658-3135-107-2-13
  6. Alandiyjany MN, Kishawy ATY, Abdelfattah-Hassan A, Eldoumani H, Elazab ST, El-Mandrawy SAM, Saleh AA, ElSawy NA, Attia YA, Arisha AH, Ibrahim D. Nano-silica and magnetized-silica mitigated lead toxicity: Their efficacy on bioaccumulation risk, performance, and apoptotic targeted genes in Nile tilapia (Oreochromis niloticus). Aquat Toxicol. 2022;242:106054. doi: 10.1016/j.aquatox.2021.106054
  7. Arthur-Ataam J, Bideaux  P,  Charrabi A, Sicard P, Fromy B, Liu K, Eddahibi S, Pasqualin C, Jouy N, Richard S, Virsolvy A. Dietary supplementation with silicon-enriched spirulina improves arterial remodeling and function in hypertensive rats. Nutrients. 2019;11(11):2574. doi: 10.3390/nu11112574
  8. Bashar A, Hasan NA, Haque MM, Rohani MF and Hossain MS. Effects of dietary silica nanoparticle on growth performance, protein digestibility, hematology, digestive morphology, and  muscle  composition  of nile tilapia, Oreochromis Niloticus. Front Mar Sci. 2021;8:706179. doi: 10.3389/fmars.2021.706179
  9. Carlisle EM. Silicon: a possible factor in bone calcification. Science. 1970;167(3916):279-280. doi: 1126/science.167.3916.279
  10. Carlisle EM. Silicon: an essential element for the chick. Science. 1972;178(4061):619-621. doi: 1126/science.178.4061.619
  11. da Silva AB, Miniter M, Thom W, Hewitt RE, Wills J, Jugdaohsingh R, Powell JJ. Gastrointestinal absorption and toxicity of nanoparticles and microparticles: Myth, reality and pitfalls explored through titanium dioxide. Curr Opin Toxicol. 2020;19:112-120. doi: 10.1016/j.cotox.2020.02.007
  12. Deryabin DG, Aleshina ES, Efremova LV. Application of the inhibition of bacterial bioluminescence test for assessment of toxicity of carbon-based nanomaterials. Microbiology. 2012;81(4):492-497. doi: 10.1134/S0026261712040042
  13. Devineau S, Kiger L, Galacteros F, Baudin-Creuza V, Marden M, Renault JP, Pin S. Manipulating hemoglobin oxygenation using silica nanoparticles: a novel prospect for artificial oxygen carriers. Blood Adv. 2018;2(2):90-94. doi: 10.1182/bloodadvances.2017012153
  14. Devineau S, Zargarian L, Renault JP, Pin S. Structure and function of adsorbed hemoglobin on silica nanoparticles: relationship between the adsorption process and the oxygen binding properties. Langmuir. 2017;33(13):3241-3252. doi: 10.1021/acs.langmuir.6b04281
  15. Francis RM, Anderson FH, Patel S, Sahota O, van Staa TP. Calcium and vitamin D in the prevention of osteoporotic fractures. QJM: An International Journal of Medicine. 2006;99(6):355-363. doi: 10.1093/qjmed/hcl031
  16. Götz W, Tobiasch E, Witzleben S, Schulze M. Effects of silicon compounds on biomineralization, osteogenesis, and hard tissue formation. Pharmaceutics. 2019;11(3):117. doi: 10.3390/pharmaceutics11030117
  17. Guo Z, Martucci NJ,  Liu Y, Yoo E, Tako E, Mahler GJ. Silicon dioxide nanoparticle exposure  affects  small  intestine  function  in  an  in  vitro    Nanotoxicology.  2018;12(5):485-508. doi: 10.1080/17435390.2018.1463407
  18. Halamoda-Kenzaoui B, Ceridono M, Urbán P, Bogni A, Ponti J, Gioria S, Kinsner-Ovaskainen A. The agglomeration state of nanoparticles can influence the mechanism of their cellular internalisation. J Nanobiotechnology. 2017;15(1):48. doi: 10.1186/s12951-017-0281-6
  19. Han H, Park YH, Park HJ, Lee K, Um K, Park JW, Lee JH. Toxic and adjuvant effects of silica nanoparticles on ovalbumin-induced allergic airway inflammation in mice. Respir Res. 2016;17(1):60. doi: 10.1186/s12931-016-0376-x
  20. Huang CC, Tsai SC,  Lin    Potential  ergogenic  effects  of  L-arginine against oxidative  and  inflammatory  stress  induced by acute exercise in aging rats. Exp Gerontol. 2008;43(6):571-577. doi: 10.1016/j.exger.2008.03.002
  21. Jugdaohsingh R, Calomme MR, Robinson K, Nielsen F, Anderson SH, D'Haese P, Geusens P, Loveridge N, Thompson RP, Powell JJ. Increased longitudinal growth in rats on a silicon-depleted diet. Bone. 2008;43(3):596-606. doi: 10.1016/j.bone.2008.04.014
  22. Jugdaohsingh R. Silicon and bone health. J Nutr Health Aging. 2007;11(2):99-110.
  23. Jurkić LM, Cepanec I, Pavelić SK, Pavelić K. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy. Nutr Metab (Lond). 2013;10(1):2. doi: 10.1186/1743-7075-10-2
  24. Kalashnikov V, Zajcev A,  Atroshchenko M,  Miroshnikov S,  Frolov A,  Zav'yalov O, Kalinkova L, Kalashnikova T. The  content  of  essential  and  toxic  elements  in  the  hair  of  the  mane of the  trotter  horses  depending  on  their    Environ Sci Pollut Res Int. 2018;25(22):21961-21967. doi: 10.1007/s11356-018-2334-2
  25. Karavolos M, Holban A. Nanosized drug delivery systems in gastrointestinal targeting: interactions with microbiota. Pharmaceuticals (Basel). 2016;9(4):62. doi: 10.3390/ph9040062
  26. Keller AA, McFerran S, Lazareva A, Suh S. Global life cycle releases of engineered nanomaterials. J Nanopart Res. 2013;15(6):1692. doi: 10.1007/s11051-013-1692-4
  27. Kim YR, Lee SY, Lee EJ, Park SH, Seong NW, Seo HS, Shin SS, Kim SJ, Meang EH, Park MK, Kim MS, Kim CS, Kim SK, Son SW, Seo YR, Kang BH, Han BS, An SS, Lee BJ, Kim MK. Toxicity of colloidal silica nanoparticles administered orally for 90 days in rats. Int J Nanomedicine. 2014;9(Suppl 2):67-78. doi: 10.2147/IJN.S57925
  28. Knight D, Ehrlich R, Fielding K, Jeffery H, Grant A, Churchyard G. Trends in silicosis prevalence and the healthy worker effect among gold miners in South Africa: a prevalence study with follow up of employment status. BMC Public Health. 2015;15:1258. doi: 10.1186/s12889-015-2566-8
  29. Küçükbay FZ, Yazlak H, Sahin N, Akdemir F, Orhan C, Juturu V, Sahin K. Effects of dietary arginine silicate inositol complex on mineral status in rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition. 2008;14(3).257-262. doi:1111/j.1365-2095.2007.00526.x
  30. Kusaka T, Nakayama M, Nakamura K, Ishimiya M, Furusawa E, Ogasawara K. Effect of silica particle size on macrophage inflammatory responses. PLoS One. 2014;9(3):e92634. doi: 10.1371/journal.pone.0092634
  31. Lall SP, Kaushik SJ. Nutrition and metabolism of minerals in fish. Animals (Basel). 2021;11(9):2711. doi: 10.3390/ani11092711
  32. Landsiedel R, Hahn D, Ossig R, Ritz S, Sauer L, Buesen R, Rehm S, Wohlleben W, Groeters S, Strauss V, Sperber S, Wami H, Dobrindt U, Prior K, Harmsen D, van Ravenzwaay B, Schnekenburger J. Gut  microbiome  and  plasma metabolome changes in rats after oral gavage of nanoparticles: sensitive indicators of possible adverse health effects. Part Fibre Toxicol. 2022;19(1):21. doi: 10.1186/s12989-022-00459-w
  33. Li X, Han T, Zheng S, Wu G. Nutrition and functions of amino acids in aquatic crustaceans. In: Wu G, editor. Amino Acids in Nutrition and Health. Advances in Experimental Medicine and Biology. Springer, Cham. 2021;1285:169-198. doi: 1007/978-3-030-54462-1_9
  34. Liu J, Cai H, Mei C, et al. Effects of nano-silicon and common silicon on lead uptake  and   translocation   in two rice cultivars. Front Environ Sci Eng. 2015;9:905-911. doi: 10.1007/s11783-015-0786-x
  35. Martin KR. The chemistry of silica and its potential health benefits. J Nutr Health Aging. 2007;11(2):94-7.
  36. McKnight JR, Satterfield MC,  Jobgen  WS, Smith SB, Spencer TE, Meininger CJ, McNeal CJ, Wu G. Beneficial effects of L-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids. 2010;39(2):349-3 doi: 10.1007/s00726-010-0598-z
  37. Merkley JW, Miller ER. The effect of sodium fluoride and sodium silicate on growth and bone strength of broilers. Poult Sci. 1983;62(5):798-804. doi: 10.3382/ps.0620798
  38. Miroshnikov S, Notova S, Kazakova T, Marshinskaia O. The total accumulation of heavy metals in body in connection with the dairy productivity of cows. Environ Sci Pollut Res Int. 2021;28(36):49852-49863. doi: 10.1007/s11356-021-14198-6
  39. Miroshnikov S, Zavyalov O, Frolov A, Sleptsov I, Sirazetdinov F, Poberukhin M. The content of toxic elements in hair of dairy cows as an indicator of productivity and elemental status of animals. Environ Sci Pollut Res Int. 2019;26(18):18554-18564. doi: 10.1007/s11356-019-05163-5
  40. Miroshnikov SA, Yausheva EV, Sizova ЕA, Miroshnikova EP, Levahin VI. Comparative assessment of effect of cooper nano and microparticles in chicken. Oriental Journal of Chemistry. 2015;31(4):2327-2336. doi: 10.13005/ojc/310461
  41. Miroshnikov SA, Yausheva EV, Sizova EA, Kosyan DB, Donnik IM. Research of opportunities for using iron nanoparticles and amino acids in poultry nutrition. International Journal of GEOMATE. 2017;13(40):124-131. doi: 10.21660/2017.40.99216
  42. Mitchell GV, Jenkins MY. Effect of excess L-lysine on rat growth and on plasma and tissue concentrations of copper, iron and zinc. J Nutr Sci Vitaminol (Tokyo). 1983;29(6):709-715. doi: 3177/jnsv.29.709
  43. Mustafina AS, Sizova EA, Kholodilina TN, Mustafin RZ, Klimova TA. Live weight and digestibility of feed nutrients when using amino acids and silicon in the diet of broilers. IOP Conference Series: Earth and Environmental Science. 2021;848(1):012064. doi: 10.1088/1755-1315/848/1/012064
  44. Naeem A, Saifullah, Zia-Ur-Rehman M, Akhtar T, Zia MH, Aslam M. Silicon nutrition lowers cadmium content of wheat cultivars by regulating transpiration rate and activity of antioxidant enzymes. Environ Pollut. 2018;242(Pt A):126-135. doi: 10.1016/j.envpol.2018.06.069
  45. Najda J, Gmiński J, Drózdz M, Danch A. The action of excessive, inorganic silicon (Si) on the mineral metabolism of calcium (Ca) and magnesium (Mg). Biol Trace Elem Res. 1993;37(2-3):107-1 doi: 10.1007/BF02783786
  46. Nakhon S, Numthuam S, Charoensook R, Tartrakoon W, Incharoen P, Incharoen T. Growth performance, meat quality, and bone-breaking strength in broilers fed dietary rice hull silicon. Anim Nutr. 2019;5(2):152-155. doi: 10.1016/j.aninu.2018.11.003
  47. Nieves JW, Komar L, Cosman F, Lindsay R. (Review Article) Calcium potentiates the effects of estrogen and calcitonin on bone mass: review and analysis. Journal of Clinical Nutrition. 1998;67:18-24.
  48. Pieszka M, Bederska-Łojewska D, Szczurek P, Pieszka M. The membrane interactions of nano-silica and its potential application in animal nutrition. Animals (Basel). 2019;9(12):1041.            doi: 10.3390/ani9121041
  49. Pietak AM, Reid JW, Scott MJ, Sayer M. Silicon substitution in the calcium phosphate bioceramics. Biomaterials. 2007;28(28):4023-4032. doi: 10.1016/j.biomaterials.2007.05.003
  50. Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HF, Evans BA, Thompson RP, Powell JJ, Hampson GN. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone. 2003;32(2):127-1 doi: 10.1016/s8756-3282(02)00950-x
  51. Rodella LF, Bonazza  V,  Labanca M,  Lonati C,  Rezzani R.  A  review  of  the  effects  of dietary  silicon  intake  on bone homeostasis and regeneration. J Nutr Health Aging. 2014;18(9):820-82 doi: 10.1007/s12603-014-0555-8
  52. Sahin K, Onderci M, Sahin N, Balci, TA, Gursu MF, Juturu V, Kucuk O. Dietary arginine silicate inositol complex improves bone mineralization in quail. Poult Sci. 2006;85(3):486-492. doi:10.1093/ps/85.3.486
  53. Seaborn CD, Briske-Anderson M, Nielsen FH. An interaction between dietary silicon and arginine affects immune function indicated by con-A-induced DNA synthesis of rat splenic T-lymphocytes. Biol Trace Elem Res. 2002;87(1-3):133-1 doi: 10.1385/BTER:87:1-3:133
  54. Shen L, Karner CM. Radiolabeled amino acid uptake assays in primary bone cells and bone explants. In: Hilton MJ, editor. Skeletal development and repair. Methods in Molecular Biology. Humana, New York, NY. 2021;2230:449-456. doi: 10.1007/978-1-0716-1028-2_28
  55. Shen L, Yu Y, Zhou Y, Pruett-Miller SM, Zhang GF, Karner CM. SLC38A2 provides proline to fulfill unique synthetic demands arising during osteoblast differentiation and bone formation. Elife. 2022;11:e76963. doi: 10.7554/eLife.76963
  56. Shie MY, Ding SJ, Chang HC. The role of silicon in osteoblast-like cell proliferation and apoptosis. Acta Biomater. 2011;7(6):2604-26 doi: 10.1016/j.actbio.2011.02.023
  57. US Food and Drug Administration. GRAS Substances (SCOGS) Database-Select Committee on GRAS Substances (SCOGS) Opinion: Silicates: Silicates. 2018;13.
  58. van der Zande M, Vandebriel RJ, Groot MJ, Kramer E, Herrera Rivera ZE, Rasmussen K, Ossenkoppele JS, Tromp P, Gremmer ER, Peters RJ, Hendriksen PJ, Marvin HJ, Hoogenboom RL, Peijnenburg AA, Bouwmeester H. Sub-chronic toxicity study in rats orally exposed to nanostructured silica. Part Fibre Toxicol. 2014;11:8. doi: 10.1186/1743-8977-11-8
  59. Vis B, Hewitt RE, Faria N, Bastos C, Chappell H, Pele L, Jugdaohsingh R, Kinrade SD, Powell JJ. Non-functionalized ultrasmall silica nanoparticles directly and size-selectively activate t cells. ACS Nano. 2018;12(11):10843-10854. doi: 10.1021/acsnano.8b03363
  60. Vis B, Hewitt RE, Monie TP, Fairbairn C, Turner SD, Kinrade SD, Powell JJ. Ultrasmall silica nanoparticles directly ligate the T cell receptor complex. Proc Natl Acad Sci USA. 2020;117(1):285-291. doi: 10.1073/pnas.1911360117
  61. Vita AA, Royse EA, Pullen NA. Nanoparticles  and  danger  signals:  Oral  delivery  vehicles  as  potential  disruptors  of  intestinal  barrier    J  Leukoc  Biol. 2019;106(1):95-103. doi: 10.1002/JLB.3MIR1118-414RR
  62. Walvekar AS, Srinivasan R, Gupta R, Laxman S. Methionine coordinates a hierarchically organized anabolic program enabling proliferation. Mol Biol Cell. 2018;29(26):3063-3200. doi: 10.1091/mbc.E18-08-0515
  63. Wang Q, Xu Z, Ai Q. Arginine metabolism and its functions in growth, nutrient utilization, and immunonutrition of fish. Anim Nutr. 2021;7(3):716-727. doi: 10.1016/j.aninu.2021.03.006
  64. Wu M, Wu X, Lu S, Gao Y, Yao W, Li X, Dong Y, Jin Z. Dietary arginine affects growth, gut  morphology,  oxidation  resistance  and  immunity of  hybrid grouper (Epinephelus  fuscoguttatus♀×Epinephelus  lanceolatus♂) juveniles. Br J Nutr. 2018;120(3):269-282.               doi: 10.1017/S0007114518001022
  65. Wu P, Tang L, Jiang W, Hu K, Liu Y, Jiang J, Kuang S, Tang L, Tang W, Zhang Y, Zhou X, Feng L. The relationship between dietary methionine and growth, digestion, absorption, and antioxidant status in intestinal and hepatopancreatic tissues of sub-adult grass carp (Ctenopharyngodon idella). J Anim Sci Biotechnol. 2017;8:63. doi: 10.1186/s40104-017-0194-0
  66. Yoshida T, Yoshioka Y,  Takahashi H, Misato K, Mori T, Hirai T, Nagano K, Abe Y, Mukai Y, Kamada H, Tsunoda S, Nabeshi H, Yoshikawa T, Higashisaka K, Tsutsumi Y. Intestinal absorption and biological effects of orally administered amorphous silica particles. Nanoscale Res Lett. 2014;9(1):532. doi: 10.1186/1556-276X-9-532
  67. Younes M, Aggett P, Aguilar F, Crebelli R, Dusemund B, Filipič M, Frutos MJ, Galtier P, Gott D, Gundert-Remy U,  Kuhnle GG,  Leblanc J-C,  Lillegaard IT,  Moldeus P, Mortensen A, Oskarsson A,  Stankovic I, Waalkens-Berendsen I, Woutersen RA, Wright M, Boon P, Chrysafidis D, Gürtler R,  Mosesso P,  Parent-Massin D,  Tobback P,  Kovalkovicova N, Rincon AM, Tard A and Lambré C.  Re-evaluation  of  silicon  dioxide  (E 551)  as  a  food    EFSA Journal. 2018;16(1):e5088. doi: 10.2903/j.efsa.2018.5088
 

Information about the authors:

Elena P Miroshnikova, Dr. Sci. (Biology), Professor, Head of the Department of Biotechnology of Animal Raw Materials and Aquaculture, Orenburg State University, 13 Pobedy Ave, Orenburg, 460018, tel.: 8-987-862-98-86.

Maria S Arinzhanova, Cand. Sci. (Biology), Junior Researcher, Department of Farm Animal Feeding and Feed Technology named after Leushin SG, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 Yanvarya St., Orenburg, 460000, tel.: 8-922-867-57-10.

Azamat E Arinzhanov, Cand. Sci. (Agriculture), Associate Professor, Department of Biotechnology of Animal Raw Materials and Aquaculture, Orenburg State University, 13 Pobedy Ave, Orenburg, 460018, tel.: 8-922-806-33-43.

Sergey A Miroshnikov, Dr. Sci. (Biology), Corresponding Member of the Russian Academy of Sciences, Rector, Orenburg State University, 13 Pobedy Ave, Orenburg, 460018, tel.: 8(3532)77-67-70.

 

The article was submitted 27.09.2024; approved after reviewing 21.10.2024; accepted for publication 16.12.2024.

Download