Ryazanov VA, Kolpakov VI, Tarasova EI, Ruchay AN.

Animal Husbandry and Fodder Production. 2024. Vol. 107, no 4. Р. 242-254.

doi:10.33284/2658-3135-107-4-242

 

Original article

Gut microbiome and functional prediction of metabolic pathways associated with fat and muscle tissue accumulation in beef cattle

 

Vitaly A Ryazanov1, Vladimir I Kolpakov2, Ekaterina I Tarasova3, Alexey N Ruchay4

1,2,3,4 Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia

1vita7456@yandex.ru, https://orcid.org/0000-0003-0903-9561

2 vkolpakov056@yandex.ru, https://orcid.org/0000-0001-9658-7034

3 ekaterina45828@mail.ru, https://orcid.org/0000-0001-6325-7389

4ran@csu.ru, https://orcid.org/0000-0002-5996-669X

 

Abstract. Reducing economic losses, improving feed utilization, maintaining health and improving the quality of finished products in the livestock industry are the main tasks that need to be solved. Scientists around the world are already proposing to use animals based on their genetic selection, which characterizes high-quality phenotypic traits. Methods are used to measure the external data and meat qualities of cattle using advanced systems for recognizing live animal bodies, including depth cameras and soft reconstruction of three-dimensional shape. However, one of the criteria for assessing animals can be the analysis of the genetic bank of microorganisms, closely related to the functional activity of the animal's digestive system. A comprehensive assessment of gene expression, taxonomic structure of the microbiome, exterior characteristics and meat productivity in combination will provide more accurate forecasts for the use and selection of animals. Our study presents the results of metagenomic sequencing (NGS) of the intestinal contents of young animals (n=40) raised in a feedlot, and annotates the association of the microbiome with their live weight and marbling degree, predicting the metabolic pathways with which these genes were associated. The analysis (LEfSe) revealed a taxonomic difference in the intestinal contents of animals with high and low live weight, the genera Clostridium sensu stricto, Clostridium XlVa, Treponema were predominant in animals with lower live weight.

Keywords: cattle, heifers, Aberdeen Angus breed, live weight, marbling, intestinal microbiome, functional prognosis, metabolic pathways

Acknowledgments: the work was performed in accordance to the plan of research works for 2024-2026 FSBRI FRC BST RAS (No. FNWZ-2024-0003).

For citation: Ryazanov VA, Kolpakov VI, Tarasova EI, Ruchay AN. Gut microbiome and functional prediction of metabolic pathways associated with fat and muscle tissue accumulation in beef cattle. Animal Husbandry and Fodder Production. 2024;107(4):242-254. (In Russ.). https://doi.org/10.33284/2658-3135-107-4-242

 

References

 
  1. Al-Husseini W, Gondro C, Quinn K, Herd RM, Gibson JP, Chen Y. Expression of candidate genes for residual feed intake in Angus cattle. Animal Genetics. 2014;45(1):12-19. doi: 10.1111/age.12092
  2. Chattopadhyay I, Gundamaraju R, Jha NK, Gupta PK, Dey A, Mandal CC, Ford BM. Interplay between dysbiosis of gut microbiome, lipid metabolism, and tumorigenesis: can gut dysbiosis stand as a prognostic marker in cancer? Dis Markers. 2022;2022(1):2941248. doi: 10.1155/2022/2941248
  3. Chen B, Li D, Leng D, Kui H, Bai X and Wang T. Gut microbiota and meat quality. Front Microbiol. 2022;13:951726. doi: 10.3389/fmicb.2022.951726
  4. Deryabin D, Lazebnik C, Vlasenko L, Karimov I, Kosyan D, Zatevalov A, Duskaev G. Broiler chicken cecal microbiome and poultry farming productivity: a meta-analysis. Microorganisms. 2024;12(4):747. doi: 10.3390/microorganisms12040747
  5. Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446-450. doi: 10.1038/nature12721
  6. Gerasimov NP, Dzhulamanov KM, Lebedev SV, Kolpakov VI. Effect of IGF-1 C472T, GH C2141G, and GHR T914A polymorphisms on growth performance and feed efficiency in young kazakh white-headed cattle. Veterinary World. 2023;16(8):1584-1592. doi: 10.14202/vetworld.2023.1584-1592
  7. Gharechahi J, Vahidi MF, Bahram M, Han JL, Ding XZ, Salekdeh GH. Metagenomic analysis reveals a dynamic microbiome with diversified adaptive functions to utilize high lignocellulosic forages in the cattle rumen. The ISME J. 2021;15(4):1108-1120. doi: 10.1038/s41396-020-00837-2
  8. Hart EH, Creevey CJ, Hitch T, Kingston-Smith AH. Meta-proteomics of rumen microbiota indicates niche compartmentalization and functional dominance in a limited number of metabolic pathways between abundant bacteria. Sci Rep. 2018;8:10504. doi: 10.1038/s41598-018-28827-7
  9. Holman DB, Gzyl KE, Scott H, Cara Service, Prieto N, López-Campos Ó. Associations between the rumen microbiota and carcass merit and meat quality in beef cattle. Applied Microbiology and Biotechnology. 2024;108(1):287. doi: 10.1007/s00253-024-13126-1
  10. Jami E, Mizrahi I. Similarity of the ruminal bacteria across individual lactating cows. Anaerobe. 2012;18(3):338-343. doi: 10.1016/j.anaerobe.2012.04.003
  11. Jang D, Yoon J, Tate M, Lee W, Kwon T, Shin S, et al. Multivariate genome-wide association studies on tenderness of Berkshire and Duroc pig breeds. Genes Genomics. 2018;40:701-705. doi: 10.1007/s13258-018-0672-6
  12. Jiang H, Fang S, Yang H, Chen C. Identification of the relationship between the gut microbiome and feed efficiency in a commercial pig cohort. Journal of Animal Science. 2021;99(3):skab045. doi: 10.1093/jas/skab045
  13. Lebeis SL, Paredes SH, Lundberg DS, et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science. 2015;349:860-864. doi: 10.1126/science.aaa8764
  14. Lei L, Wang Z, Li J, Yang H, Yin Y, Tan B, et al. Comparative microbial profiles of colonic digesta between ningxiang pig and large white pig. Animals. 2021;11(7):1862. doi: 10.3390/ani11071862
  15. Li Y, Cheng G, Yamada T, Liu J, Zan L, Tong B. Effect of expressions and SNPs of candidate genes on intramuscular fat content in qinchuan cattle. Animals (Basel). 2020;10(8):1370. doi: 10.3390/ani10081370
  16. Li Z, Cui R, Wang YB, Luo YB, Xue PX, Tang QG, Fang MY. Specific gastrointestinal microbiota profiles in Chinese Tan sheep are associated with lauric acid content in muscle. BMC microbiology. 2023;23(1):331. doi: 10.1186/s12866-023-03079-2
  17. Liu Y, Wu H, Chen W, Liu C, Meng Q, Zhou Z. Rumen microbiome and metabolome of high and low residual feed intake angus heifers. Frontiers in Veterinary Science. 2022;9:812861. doi: 10.3389/fvets.2022.812861
  18. Liu YX, Qin Y, Chen T, Lu M, Qian X, Guo X, Bai Y. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein & Cell. 2021; 12(5):315-330. doi: 10.1007/s13238-020-00724-8
  19. Lopes DRG, de Souza Duarte M, La Reau AJ, Chaves IZ, de Oliveira Mendes TA, Detmann E, Bento CBP, Mercadante MEZ, Bonilha SFM, Suen G, Mantovani HC. Assessing the relationship between the rumen microbiota and feed efficiency in Nellore steers. Journal of Animal Science and Biotechnology. 2021; 12(1):79. doi: 1186/s40104-021-00599-7
  20. Moszak M, Szulińska M, Bogdański P. You are what you eat—the relationship between diet, microbiota, and metabolic disorders—a review. Nutrients. 2020;12(4):1096. doi: 10.3390/nu12041096
  21. Paster BJ, Russell JB, Yang CM, Chow JM, Woese CR, Tanner R. Phylogeny of the ammonia-producing ruminal bacteria Peptostreptococcus anaerobius, Clostridium sticklandii, and Clostridium aminophilum sp. nov. Int J Syst Bacteriol. 1993;43(1):107-10. doi: 10.1099/00207713-43-1-107
  22. Pflock M, Dietz P, Schar J, Beier D. Genetic evidence for histidine kinase HP165 being an acid sensor of Helicobacter pylori. FEMS Microbiol Lett. 2004;234(1):51-61. doi: 10.1016/j.femsle.2004.03.023
  23. Psichas A, Sleeth ML, Murphy KG, et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes (Lond). 2015;39(3):424-429. doi: 1038/ijo.2014.153
  24. Roberts DL, Bennett DW, Forst SA. Identification of the site of phosphorylation on the osmosensor, EnvZ, of Escherichia coli. J Biol Chem. 1994;269(12):8728-33.
  25. Rosero JA, Killer J, Sechovcova H, Mrazek J, Benada O, Fliegerova K, Havlik J, Kopecny J. Reclassification of Eubacterium rectale (Hauduroy et al. 1937) Pre´ vot 1938 in a new genus Agathobacter gen. nov. as Agathobacter rectalis comb. nov., and description of Agathobacter ruminis sp. nov., isolated from the rumen contents of sheep and cows. International Journal of Systematic and Evolutionary Microbiology. 2016;66(2):768-773. doi: 10.1099/ijsem.0.000788
  26. Ruchay A, Kober V, Dorofeev K, Kolpakov V, Gladkov A, Guo H. Live weight prediction of cattle based on deep regression of RGB-D images. Agriculture. 2022;12(11):1794. doi: 10.3390/agriculture12111794
  27. Samuel BS, Shaito A, Motoike T, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. PNAS. 2008;105(43):16767-16772. doi: 10.1073/pnas.0808567105
  28. Tabrett A, Horton MW. The influence of host genetics on the microbiome. F1000Res. 2020;9(F1000 Faculty Rev):84. doi: 10.12688/f1000research.20835.1
  29. Tang S, Zhong R, Yin C, Su D, Xie J, Chen L, Liu L, Zhang H. Exposure to high aerial ammonia causes hindgut dysbiotic microbiota and alterations of microbiota-derived metabolites in growing pigs. Front Nutr. 2021;8:689818. doi: 10.3389/fnut.2021.689818
  30. Torres Manno MA, Gizzi FO, Martín M, Espariz M, Magni C, Blancato VS. Metagenomic approach to infer rumen microbiome derived traits of cattle. World J Microbiol Biotechnol. 2023;39(9):250. doi: 10.1007/s11274-023-03694-1
  31. Wallace RJ, Rooke JA, McKain N, Duthie CA, Hyslop JJ, Ross DW, Waterhouse A, Watson M, Roehe R. The rumen microbial metagenome associated with high methane production in cattle. BMC Genomics. 2015;23(16):839. doi: 10.1186/s12864-015-2032-0
  32. Wang H, Cronan JE. Only  one  of the two annotated Lactococcus lactis fabG genes encodes a functional beta-ketoacyl-acyl carrier protein reductase. Biochemistry. 2004;43(37):11782-11789. doi: 10.1021/bi0487600
  33. Xu Q, Qiao Q, Gao Y, Hou J, Hu M, Du Y, Zhao K, Li X. Gut microbiota and their role in health and metabolic disease of dairy cow. Frontiers in Nutrition. 2021;8:701511. doi: 10.3389/fnut.2021.701511
  34. Xue L, Wang D, Zhang F, Cai L. Prophylactic feeding of clostridium butyricum and saccharomyces cerevisiae were advantageous in resisting the adverse effects of heat stress on rumen fermentation and growth performance in goats. Animals (Basel). 2022;12(18):2455. doi: 10.3390/ani12182455
  35. Zheng L, White RH, Cash VL,  Jack RF, Dean DR. Cysteine desulfurase activity indicates a role  for  NIFS  in  metallocluster    Proc  Natl  Acad  Sci  U S A. 1993;90(7):2754-2758. doi: 10.1073/pnas.90.7.2754
  36. Zheng Y, Chen J, Wang X, Han L, Yang Y, Wang Q, et al. Metagenomic and transcriptomic analyses reveal the differences and associations between the gut microbiome and muscular genes in angus and chinese simmental cattle. Front Microbiol. 2022;13:815915. doi: 10.3389/fmicb.2022.815915
 

Information about the authors:

Vitaly A Ryazanov, Cand. Sci. (Agriculture), Senior Researcher at the Laboratory of Precision Technologies in Agriculture, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000, tel.: 8-922-807-71-00.

Vladimir I Kolpakov, Cand. Sci. (Agriculture), Head of the Laboratory of Precision Technologies in Agriculture, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000, tel.: 8-987-341-77-02.

Ekaterina I Tarasova, Junior Researcher, Laboratory of Molecular Genetic Research and Metallomics in Animal Husbandry, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000, tel.: 8-987-896-29-20.

Alexey N Ruchai, Cand. Sci. (Physical and Mathematical), Senior Researcher at the Laboratory of Precision Technologies in Agriculture, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000, tel.: 8-908-058-97-04.

 

The article was submitted 25.09.2024; approved after reviewing 28.10.2024; accepted for publication 16.12.2024.

Download