Ryazanov VA, Kolpakov VI, Tarasova EI, Ruchay AN.
Animal Husbandry and Fodder Production. 2024. Vol. 107, no 4. Р. 242-254.
doi:10.33284/2658-3135-107-4-242
Original article
Gut microbiome and functional prediction of metabolic pathways associated with fat and muscle tissue accumulation in beef cattle
Vitaly A Ryazanov1, Vladimir I Kolpakov2, Ekaterina I Tarasova3, Alexey N Ruchay4
1,2,3,4 Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
1vita7456@yandex.ru, https://orcid.org/0000-0003-0903-9561
2 vkolpakov056@yandex.ru, https://orcid.org/0000-0001-9658-7034
3 ekaterina45828@mail.ru, https://orcid.org/0000-0001-6325-7389
4ran@csu.ru, https://orcid.org/0000-0002-5996-669X
Abstract. Reducing economic losses, improving feed utilization, maintaining health and improving the quality of finished products in the livestock industry are the main tasks that need to be solved. Scientists around the world are already proposing to use animals based on their genetic selection, which characterizes high-quality phenotypic traits. Methods are used to measure the external data and meat qualities of cattle using advanced systems for recognizing live animal bodies, including depth cameras and soft reconstruction of three-dimensional shape. However, one of the criteria for assessing animals can be the analysis of the genetic bank of microorganisms, closely related to the functional activity of the animal's digestive system. A comprehensive assessment of gene expression, taxonomic structure of the microbiome, exterior characteristics and meat productivity in combination will provide more accurate forecasts for the use and selection of animals. Our study presents the results of metagenomic sequencing (NGS) of the intestinal contents of young animals (n=40) raised in a feedlot, and annotates the association of the microbiome with their live weight and marbling degree, predicting the metabolic pathways with which these genes were associated. The analysis (LEfSe) revealed a taxonomic difference in the intestinal contents of animals with high and low live weight, the genera Clostridium sensu stricto, Clostridium XlVa, Treponema were predominant in animals with lower live weight.
Keywords: cattle, heifers, Aberdeen Angus breed, live weight, marbling, intestinal microbiome, functional prognosis, metabolic pathways
Acknowledgments: the work was performed in accordance to the plan of research works for 2024-2026 FSBRI FRC BST RAS (No. FNWZ-2024-0003).
For citation: Ryazanov VA, Kolpakov VI, Tarasova EI, Ruchay AN. Gut microbiome and functional prediction of metabolic pathways associated with fat and muscle tissue accumulation in beef cattle. Animal Husbandry and Fodder Production. 2024;107(4):242-254. (In Russ.). https://doi.org/10.33284/2658-3135-107-4-242
References
- Al-Husseini W, Gondro C, Quinn K, Herd RM, Gibson JP, Chen Y. Expression of candidate genes for residual feed intake in Angus cattle. Animal Genetics. 2014;45(1):12-19. doi: 10.1111/age.12092
- Chattopadhyay I, Gundamaraju R, Jha NK, Gupta PK, Dey A, Mandal CC, Ford BM. Interplay between dysbiosis of gut microbiome, lipid metabolism, and tumorigenesis: can gut dysbiosis stand as a prognostic marker in cancer? Dis Markers. 2022;2022(1):2941248. doi: 10.1155/2022/2941248
- Chen B, Li D, Leng D, Kui H, Bai X and Wang T. Gut microbiota and meat quality. Front Microbiol. 2022;13:951726. doi: 10.3389/fmicb.2022.951726
- Deryabin D, Lazebnik C, Vlasenko L, Karimov I, Kosyan D, Zatevalov A, Duskaev G. Broiler chicken cecal microbiome and poultry farming productivity: a meta-analysis. Microorganisms. 2024;12(4):747. doi: 10.3390/microorganisms12040747
- Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446-450. doi: 10.1038/nature12721
- Gerasimov NP, Dzhulamanov KM, Lebedev SV, Kolpakov VI. Effect of IGF-1 C472T, GH C2141G, and GHR T914A polymorphisms on growth performance and feed efficiency in young kazakh white-headed cattle. Veterinary World. 2023;16(8):1584-1592. doi: 10.14202/vetworld.2023.1584-1592
- Gharechahi J, Vahidi MF, Bahram M, Han JL, Ding XZ, Salekdeh GH. Metagenomic analysis reveals a dynamic microbiome with diversified adaptive functions to utilize high lignocellulosic forages in the cattle rumen. The ISME J. 2021;15(4):1108-1120. doi: 10.1038/s41396-020-00837-2
- Hart EH, Creevey CJ, Hitch T, Kingston-Smith AH. Meta-proteomics of rumen microbiota indicates niche compartmentalization and functional dominance in a limited number of metabolic pathways between abundant bacteria. Sci Rep. 2018;8:10504. doi: 10.1038/s41598-018-28827-7
- Holman DB, Gzyl KE, Scott H, Cara Service, Prieto N, López-Campos Ó. Associations between the rumen microbiota and carcass merit and meat quality in beef cattle. Applied Microbiology and Biotechnology. 2024;108(1):287. doi: 10.1007/s00253-024-13126-1
- Jami E, Mizrahi I. Similarity of the ruminal bacteria across individual lactating cows. Anaerobe. 2012;18(3):338-343. doi: 10.1016/j.anaerobe.2012.04.003
- Jang D, Yoon J, Tate M, Lee W, Kwon T, Shin S, et al. Multivariate genome-wide association studies on tenderness of Berkshire and Duroc pig breeds. Genes Genomics. 2018;40:701-705. doi: 10.1007/s13258-018-0672-6
- Jiang H, Fang S, Yang H, Chen C. Identification of the relationship between the gut microbiome and feed efficiency in a commercial pig cohort. Journal of Animal Science. 2021;99(3):skab045. doi: 10.1093/jas/skab045
- Lebeis SL, Paredes SH, Lundberg DS, et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science. 2015;349:860-864. doi: 10.1126/science.aaa8764
- Lei L, Wang Z, Li J, Yang H, Yin Y, Tan B, et al. Comparative microbial profiles of colonic digesta between ningxiang pig and large white pig. Animals. 2021;11(7):1862. doi: 10.3390/ani11071862
- Li Y, Cheng G, Yamada T, Liu J, Zan L, Tong B. Effect of expressions and SNPs of candidate genes on intramuscular fat content in qinchuan cattle. Animals (Basel). 2020;10(8):1370. doi: 10.3390/ani10081370
- Li Z, Cui R, Wang YB, Luo YB, Xue PX, Tang QG, Fang MY. Specific gastrointestinal microbiota profiles in Chinese Tan sheep are associated with lauric acid content in muscle. BMC microbiology. 2023;23(1):331. doi: 10.1186/s12866-023-03079-2
- Liu Y, Wu H, Chen W, Liu C, Meng Q, Zhou Z. Rumen microbiome and metabolome of high and low residual feed intake angus heifers. Frontiers in Veterinary Science. 2022;9:812861. doi: 10.3389/fvets.2022.812861
- Liu YX, Qin Y, Chen T, Lu M, Qian X, Guo X, Bai Y. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein & Cell. 2021; 12(5):315-330. doi: 10.1007/s13238-020-00724-8
- Lopes DRG, de Souza Duarte M, La Reau AJ, Chaves IZ, de Oliveira Mendes TA, Detmann E, Bento CBP, Mercadante MEZ, Bonilha SFM, Suen G, Mantovani HC. Assessing the relationship between the rumen microbiota and feed efficiency in Nellore steers. Journal of Animal Science and Biotechnology. 2021; 12(1):79. doi: 1186/s40104-021-00599-7
- Moszak M, Szulińska M, Bogdański P. You are what you eat—the relationship between diet, microbiota, and metabolic disorders—a review. Nutrients. 2020;12(4):1096. doi: 10.3390/nu12041096
- Paster BJ, Russell JB, Yang CM, Chow JM, Woese CR, Tanner R. Phylogeny of the ammonia-producing ruminal bacteria Peptostreptococcus anaerobius, Clostridium sticklandii, and Clostridium aminophilum sp. nov. Int J Syst Bacteriol. 1993;43(1):107-10. doi: 10.1099/00207713-43-1-107
- Pflock M, Dietz P, Schar J, Beier D. Genetic evidence for histidine kinase HP165 being an acid sensor of Helicobacter pylori. FEMS Microbiol Lett. 2004;234(1):51-61. doi: 10.1016/j.femsle.2004.03.023
- Psichas A, Sleeth ML, Murphy KG, et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes (Lond). 2015;39(3):424-429. doi: 1038/ijo.2014.153
- Roberts DL, Bennett DW, Forst SA. Identification of the site of phosphorylation on the osmosensor, EnvZ, of Escherichia coli. J Biol Chem. 1994;269(12):8728-33.
- Rosero JA, Killer J, Sechovcova H, Mrazek J, Benada O, Fliegerova K, Havlik J, Kopecny J. Reclassification of Eubacterium rectale (Hauduroy et al. 1937) Pre´ vot 1938 in a new genus Agathobacter gen. nov. as Agathobacter rectalis comb. nov., and description of Agathobacter ruminis sp. nov., isolated from the rumen contents of sheep and cows. International Journal of Systematic and Evolutionary Microbiology. 2016;66(2):768-773. doi: 10.1099/ijsem.0.000788
- Ruchay A, Kober V, Dorofeev K, Kolpakov V, Gladkov A, Guo H. Live weight prediction of cattle based on deep regression of RGB-D images. Agriculture. 2022;12(11):1794. doi: 10.3390/agriculture12111794
- Samuel BS, Shaito A, Motoike T, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. PNAS. 2008;105(43):16767-16772. doi: 10.1073/pnas.0808567105
- Tabrett A, Horton MW. The influence of host genetics on the microbiome. F1000Res. 2020;9(F1000 Faculty Rev):84. doi: 10.12688/f1000research.20835.1
- Tang S, Zhong R, Yin C, Su D, Xie J, Chen L, Liu L, Zhang H. Exposure to high aerial ammonia causes hindgut dysbiotic microbiota and alterations of microbiota-derived metabolites in growing pigs. Front Nutr. 2021;8:689818. doi: 10.3389/fnut.2021.689818
- Torres Manno MA, Gizzi FO, Martín M, Espariz M, Magni C, Blancato VS. Metagenomic approach to infer rumen microbiome derived traits of cattle. World J Microbiol Biotechnol. 2023;39(9):250. doi: 10.1007/s11274-023-03694-1
- Wallace RJ, Rooke JA, McKain N, Duthie CA, Hyslop JJ, Ross DW, Waterhouse A, Watson M, Roehe R. The rumen microbial metagenome associated with high methane production in cattle. BMC Genomics. 2015;23(16):839. doi: 10.1186/s12864-015-2032-0
- Wang H, Cronan JE. Only one of the two annotated Lactococcus lactis fabG genes encodes a functional beta-ketoacyl-acyl carrier protein reductase. Biochemistry. 2004;43(37):11782-11789. doi: 10.1021/bi0487600
- Xu Q, Qiao Q, Gao Y, Hou J, Hu M, Du Y, Zhao K, Li X. Gut microbiota and their role in health and metabolic disease of dairy cow. Frontiers in Nutrition. 2021;8:701511. doi: 10.3389/fnut.2021.701511
- Xue L, Wang D, Zhang F, Cai L. Prophylactic feeding of clostridium butyricum and saccharomyces cerevisiae were advantageous in resisting the adverse effects of heat stress on rumen fermentation and growth performance in goats. Animals (Basel). 2022;12(18):2455. doi: 10.3390/ani12182455
- Zheng L, White RH, Cash VL, Jack RF, Dean DR. Cysteine desulfurase activity indicates a role for NIFS in metallocluster Proc Natl Acad Sci U S A. 1993;90(7):2754-2758. doi: 10.1073/pnas.90.7.2754
- Zheng Y, Chen J, Wang X, Han L, Yang Y, Wang Q, et al. Metagenomic and transcriptomic analyses reveal the differences and associations between the gut microbiome and muscular genes in angus and chinese simmental cattle. Front Microbiol. 2022;13:815915. doi: 10.3389/fmicb.2022.815915
Information about the authors:
Vitaly A Ryazanov, Cand. Sci. (Agriculture), Senior Researcher at the Laboratory of Precision Technologies in Agriculture, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000, tel.: 8-922-807-71-00.
Vladimir I Kolpakov, Cand. Sci. (Agriculture), Head of the Laboratory of Precision Technologies in Agriculture, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000, tel.: 8-987-341-77-02.
Ekaterina I Tarasova, Junior Researcher, Laboratory of Molecular Genetic Research and Metallomics in Animal Husbandry, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000, tel.: 8-987-896-29-20.
Alexey N Ruchai, Cand. Sci. (Physical and Mathematical), Senior Researcher at the Laboratory of Precision Technologies in Agriculture, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000, tel.: 8-908-058-97-04.
The article was submitted 25.09.2024; approved after reviewing 28.10.2024; accepted for publication 16.12.2024.
Download