Yausheva EV, Sizova EA.

Animal Husbandry and Fodder Production. 2024. Vol. 107, no 4. Р. 266-282.

doi:10.33284/2658-3135-107-4-266

 

Original article

Taxonomic diversity of the large intestine microbiota of cows with different levels of

essential elements in the body

 

Elena V Yausheva1, Elena A Sizova2

1,2Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia

1vasilena56@mail.ru, https://orcid.org/0000-0002-1589-2211

2Sizova.L78@yandex.ru, orcid.org/0000-0002-5125-5981

Abstract. Microelements such as iron, manganese, copper, cobalt, selenium and zinc are vital and play an important role in the growth and productivity of farm animals. Excess or deficiency of essential elements leads to deviations in the development of animals and a general deterioration in health and metabolic processes. The microbiome of the gastrointestinal tract of ruminants is a participant in many metabolic processes in the body and will also respond to changes in mineral metabolism. The aim of the work was to study the relationship between the elemental composition of hair, milk and the state of the colon microbiome. According to the elemental composition of hair, the animals were divided into 2 groups (n = 15): Group I (control) - the level of microelements (Cu, Zn, Co, Se, Mn, Fe) within the reference values, Group II - the level of microelements is below or within the lower limit of the reference values. The level of Se, Cu, Co, Zn, Fe and Mn was significantly (P≤0.05) lower by 21.4; 20; 30.1; 17.9; 40.3 and 30.2% in animals of group II relative to I. Also, in the hair of cows of group II, a lower content of calcium (-7.3%, P≤0.05) and chromium (-5.67%, P≤0.05) and a higher concentration of silicon (+36.4%, P≤0.05), mercury (+6.73%, P≤0.05) and nickel (+11.6%, P≤0.05) were noted in comparison with group I. Similarly, in milk from animals of group II, the content of copper (-23.3%, P≤0.05), calcium (-3.19%, P≤0.05) and selenium (-7.96%, P≤0.05) was lower than in I. The microbiome of the large intestine of cows of group II in comparison with I was characterized by lower biodiversity. In the taxonomic composition of the intestinal microbiota of cows of group II, a lower relative abundance of bacteria of the taxa Lachnospiraceae, Alistipes, Prevotella, which are active producers of short-chain fatty acids, was noted. The obtained data show the importance of studying the myrobiota of the gastrointestinal tract against the background of an imbalance of trace elements in the animal body and the prospects for managing metabolic processes in the intestine by correcting elementoses.

Keywords: cattle, microbiota, elemental composition of milk, microelements, macroelements

Acknowledgments: the work was performed in accordance to the plan of research works for 2022-2024 FSBRI FRC BST RAS (No FNWZ-2022-0011).

For citation: Yausheva EV, Sizova EA. Taxonomic diversity of the large intestine microbiota of cows with different levels of essential elements in the body. Animal Husbandry and Fodder Production. 2024;107(4):266-282. (In Russ.). https://doi.org/10.33284/2658-3135-107-4-266

 

References

 
  1. Goilean DV, Cristina RT, Doma AO, Dumitrescu E, Moruzi RF, Degi DM, Orasan SA, Muselin F. Effects of glycine chelated Zn, Cu, Mn and Fe supplementation on some milk parameters and serum trace elements levels in dairy cows. Animal Husbandry and Fodder Production. 2022;105(3):34-39. doi:10.33284/2658-3135-105-3-40 doi:10.33284/2658-3135-105-3-34
  2. Voronina OA, Bogolyubova NV,  Zaitsev    Mineral  composition  of  cow's  milk – a mini-review.  Sel’skokhozyaistvennaya biologiya  [Agricultural Biology]. 2022;4:681-693.  doi: 10.15389/agrobiology.2022.4.681eng
  3. Lihodeevsky GA, Bogatova PS, Lihodeevskaya OE. The bacterial microbiota of the gastrointestinal tract of dairy cattle: structure, functions, importance (review). Agrarnaya nauka Evro-Severo-Vostoka = Agricultural Science Euro-North-East. 2024;25(2):159–171. doi: 10.30766/2072-9081.2024.25.2.159-171
  4. Miroshnikov SA, Zavyalov OA, Frolov AN. Effect of lead concentration in hair on elemental interrelation and milk production of the Holstein cows. Animal Husbandry and Fodder Production. 2019a; 102(1):54-70. doi: 10.33284/2658-3135-102-1-54
  5. Kalashnikov AP et al. Norms and diets for feeding farm animals: Ref. book. 3rd ed., add. and reworked. Moscow; 2003: 456 p.
  6. Miroshnikov SA,   Zavyalov OA,   Frolov  AN,  Kurilkina  MYa,  Tyapugin  EA,  Tagirov KhKh. Reference ranges of concentrations of chemical elements in the wool of dairy cows. Animal Husbandry and Fodder Production. 2019b; 102(3):33-45. doi: 10.33284/2658-3135-102-3-33
  7. Elenschleger AA, Afanasyev KA. On the issue of mineral metabolic disorder in cows. Bulletin of Altai State Agricultural University. 2017;3(149):143-148.
  8. Afzal A, Mahreen N.  Emerging  insights  into  the  impacts  of heavy metals exposure on health,  reproductive  and  productive  performance  of  Front Pharmacol. 2024;15:1375137. doi: 10.3389/fphar.2024.1375137
  9. Anchordoquy JM, Anchordoquy JP,  Galarza EM, Farnetano NA, Giuliodori MJ, Nikoloff N, Fazzio LE, Furnus С Parenteral zinc supplementation increases pregnancy rates in beef cows. Biological Trace Element Research. 2019;192(2):175-182. https://doi.org/10.1007/s12011-019-1651-8
  10. Chowdhury BA, Chandra RK. Biological and health implications of toxic heavy metal and essential trace element interactions. Progress in Food & Nutrition Science. 1987;11(1):55-113
  11. Claus SP, Ellero SL, Berger B, Krause L, Bruttin A, Molina J, et al. Colonization-induced host-gut microbial metabolic interaction. MBio. 2011;2(2):e00271–10. doi: 10.1128/mBio.00271-10
  12. Collins SL, Patterson AD. The gut microbiome: an orchestrator of xenobiotic metabolism. Acta Pharm Sin B. 2020;10(1):19-32. doi: 10.1016/j.apsb.2019.12.001
  13. Collins JF, Flores SRL, Wang X, Anderson GJ. Mechanisms and Regulation of Intestinal Iron Transport. Physiology of the Gastrointestinal Tract (Sixth Edition). 2018:1451- doi: 10.1016/b978-0-12-809954-4.00060-8
  14. de Sousa Ferreira JM, de Almeida Araújo C, dos Santos Pessoa RM, Costa Gois G, Sena Campos F, Laet Almeida Vicente S, dos Santos Pessoa AM, Correia da Cunha Castro Costa D, da Silva Azevêdo P, y Oliveira Lima D. Vitaminas e minerais na nutrição de bovinos. Revista Colombiana de Ciencia Animal - RECIA. 2023;15(2):e969. doi: 10.24188/recia.v15.n2.2023.969
  15. Ferreira RLU, Sena-Evangelista KCM, de Azevedo EP, Pinheiro FI, Cobucci RN, Pedrosa LFC. Selenium in human health and gut microflora: Bioavailability of selenocompounds and relationship with diseases. Front Nutr. 2021;8:685317. doi: 10.3389/fnut.2021.685317
  16. Grešáková Ľ, Holodová M, Szumacher-Strabel M, et al. Mineral status and enteric methane production  in  dairy  cows  during  different  stages  of  BMC  Vet  Res. 2021;17:287. doi: 10.1186/s12917-021-02984-w
  17. Izumi K, Fukumori R, Oikawa S, Oba M. Short communication: Effects of butyrate supplementation on the productivity of lactating dairy cows fed diets differing in starch content. Journal of Dairy Science. 2019;102(12):11051-11056. doi: 10.3168/jds.2019-17113
  18. Kalaeva E, Kalaev V, Chernitskiy A, Alhamed M, Safonov V. Incidence risk of bronchopneumonia in newborn calves associated with intrauterine diselementosis. Vet World. 2020;13(5):987-995. doi: 10.14202/vetworld.2020.987-995
  19. Khan MZ, Ma Y, Xiao J, Chen T, Ma J, Liu S, Wang Y, Khan A, Alugongo GM, Cao Z. Role of selenium and vitamins E and B9 in the alleviation of bovine mastitis during the periparturient period. Antioxidants (Basel, Switzerland). 2022;11(4):657. doi: 10.3390/antiox11040657
  20. Lynch RJM and Duckworth RM. Chapter 4: Microelements: Part I: Zn, Sn, Cu, Fe and I. In: Zohoori FV, Duckworth RM, Zohoori V, Duckworth R, editors. Monographs in oral science. 2020;28:32-47. doi: 10.1159/000499007
  21. Liu L, Wu P,  Guo A,  Yang Y,  Chen F and Zhang Q. Research progress on the regulation of production traits by gastrointestinal microbiota in dairy cows. Front Vet Sci. 2023;10:1206346. doi: 10.3389/fvets.2023.1206346
  22. Loch M, Dorbek-Sundström E, Husso A, Pessa-Morikawa T, Niine T, Kaart T, Mõtus K, Niku M, Orro T. Associations of neonatal dairy calf faecal microbiota with inflammatory markers and future performance. Animals. 2024;14(17):2533. doi: 10.3390/ani14172533
  23. Li RW, Wu S, Baldwin RL, Li W and Li C. Perturbation dynamics of the rumen microbiota in response to exogenous butyrate. PLoS One. 2012;7(1):e29392. doi: 10.1371/journal.pone.0029392
  24. Mehdi Y, Dufrasne I. Selenium in cattle: A review. Molecules (Basel, Switzerland). 2016;21(4):545. doi: 10.3390/molecules21040545
  25. Miroshnikov S, Notova S, Kazakova T, Marshinskaia O. The total accumulation of heavy metals in body in connection with the dairy productivity of cows. Environmental Science and Pollution Research. 2021;28(36):49852- doi: 10.1007/s11356-021-14198-6
  26. Nemec LM, Richards JD, Atwell CA, Diaz DE, Zanton GI, Gressley TF. Immune responses in lactating Holstein cows supplemented with Cu, Mn, and Zn as sulfates or methionine hydroxy analogue chelates. J Dairy Sci. 2012;95(8):4568-4577. doi: 10.3168/jds.2012-5404
  27. Niwiska B. Digestion in Ruminants. [Internet]. Carbohydrates - comprehensive studies on glycobiology and glycotechnology. InTech. Available from: http://dx.doi.org/10.5772/51574
  28. Numa Pompilio  CG,  Francisco CS, Marco Tulio FM, Sergio Samuel SM, Fernanda Eliza GJ. Heavy metals in blood, milk and cow's urine reared in irrigated areas with wastewater. Heliyon. 2021;7(4):e06693. doi: 10.1016/j.heliyon.2021.e06693
  29. Plaizier JC, Danesh Mesgaran M, Derakhshani H, Golder H, Khafipour E, Kleen JL, Lean I, Loor J, Penner G, Zebeli Q. Review: Enhancing gastrointestinal health in dairy cows. Animal. 2018;12(s2):s399- doi: 10.1017/S1751731118001921
  30. Prasetiyono BWHE, Widiyanto W, Pandupuspitasari NS. Retracted: Gut microbiota profiles in dairy cattle from highland and coastal regions using shotgun metagenomic approach. BioMed Research International. 2022;2022(1):3659052. doi: 10.1155/2022/3659052
  31. Qin L, Yao W, Wang T, Jin T, Guo B, Wen S, Huang F. Targeting gut microbiota-derived butyrate improves hepatic gluconeogenesis through the cAMP-PKA-GCN5 pathway in late pregnant sows. Food & Function. 2022;13(8):4360-4374. doi: 10.1039/d2fo00094f
  32. Ramah A, Kato T, Shinya U, Baakhtari M, Imatake S, Jadi AR, Yasuda M. Effects of maternal supplementation with organic trace minerals including zinc, manganese, copper, and cobalt during the late and post-partum periods on the health and immune status of japanese black calves. Animals. 2023;13(23):3679. doi: 10.3390/ani13233679
  33. Reed S, Neuman H, Moscovich S, Glahn RP, Koren O, Tako E. Chronic zinc deficiency alters chick gut microbiota composition and function. Nutrients. 2015;7(12):9768-9784. doi: 10.3390/nu7125497
  34. Séboussi R, Tremblay GF, Ouellet V, Chouinard PY, Chorfi Y, Bélanger G, Charbonneau É. Selenium-fertilized forage as a way to supplement lactating dairy cows. Journal of Dairy Science. 2016;99(7):5358-5369. doi: 10.3168/jds.2015-10758
  35. Sharma RP, Street JC, Shupe JL, Bourcier DR. Accumulation and depletion of cadmium and lead in tissues and milk of lactating cows fed small amounts of these metals. J Dairy Sci. 1982; 65(6):972-979. doi: 10.3168/jds.S0022-0302(82)82298-4
  36. Smith AD, Panickar KS, Urban JF, Dawson HD. Impact of micronutrients on the immune response of animals. Annual Review of Animal Biosciences. 2018;6:227-254. doi: 10.1146/annurev-animal-022516-022914
  37. Stackebrandt ES. Ruminobacter. 2015. doi: 10.1002/9781118960608.gbm01085
  38. Teseo S, Otani S, Brinch C. et al. A global phylogenomic and metabolic reconstruction of the large intestine bacterial community of domesticated cattle. Microbiome. 2022;10(1):155. doi: 10.1186/s40168-022-01357-1
  39. van der Reijden OL, Galetti V, Herter-Aeberli I, Zimmermann MB, Zeder C, Krzystek A, Haldimann M, Barmaz A, Kreuzer M, Berard J, Schlegel P. Effects of feed iodine concentrations and milk processing on iodine concentrations of cows' milk and dairy products, and potential impact on iodine intake in Swiss adults. British Journal of Nutrition. 2019;122(2):172- doi: 10.1017/S0007114519001041
  40. Virgínio Júnior GF, Bittar CMM. Microbial colonization of the gastrointestinal tract of dairy calves - a review of its importance and relationship to health and performance. Animal Health Research Reviews. 2021;22(2):97-108. doi: 1017/S1466252321000062
  41. Wagner JJ, Edwards-Callaway LN, Engle TE. Vitamins and trace minerals in ruminants: confinement feedlot. Veterinary Clinics of North America. Food Animal Practice. 2023;39(3):505-516. doi: 10.1016/j.cvfa.2023.06.005
  42. Weinsberg F, Bickmeyer U, Wiegand H. Effects of inorganic mercury (Hg2+) on calcium channel currents and catecholamine release from bovine chromaffin cells. Archives of Toxicology. 1995;69(3):191- doi: 10.1007/s002040050157
  43. Weiss WP. A 100-Year Review: From ascorbic acid to zinc-Mineral and vitamin nutrition of dairy cows. Journal of Dairy Science. 2017;100(12):10045-10060. doi: 3168/jds.2017-12935
  44. Xue MY, Sun HZ, Wu XH, Liu JX, Guan LL. Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance. Microbiome. 2020;8(1):64. doi: 10.1186/s40168-020-00819-8
  45. Wang Y, Zhao Y, Nan X, Wang Y, Cai M, Jiang L, Luo Q, Xiong B. Rumen-protected glucose supplementation alters fecal microbiota and its metabolic profiles in early lactation dairy cows. Front Microbiol. 2022;13:1034675. doi: 3389/fmicb.2022.1034675
  46. Wang L, Wu D, Zhang Y, Li K, Wang M, Ma J. Dynamic distribution of gut microbiota in cattle at different breeds and health states. Front Microbiol. 2023;14:1113730. doi: 10.3389/fmicb.2023.1113730
  47. Zhang B, Liu N, Hao M, Zhou J, Xie Y, He Z. Plant-derived polysaccharides regulated immune status, gut health and microbiota of broilers: a review. Front Vet Sci. 2022;8:791371. doi: 10.3389/fvets.2021.791371
  48. Zhang X, Jia L, He H, Yin H, Ming J, Hou T, Xiang J. Modulation of oxidative stress and gut microbiota by seleniumcontaining peptides from Cardamine enshiensis and structural-based characterization. Food Chem. 2022;395:133547. doi: 10.1016/j.foodchem.2022.133547
  49. Zhang L, Shen H, Zhang J, Mao S. Variety of rumen microbial populations involved in biohydrogenation related to individual milk fat percentage of dairy cows. Front Vet Sci. 2023;10:1106834. doi: 10.3389/fvets.2023.1106834
  50. Zheng L, Kelly CJ, Battista KD, Schaefer R, Lanis JM, Alexeev EE, Wang RX, Onyiah JC, Kominsky DJ, Colgan SP. Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of Claudin-2. J Immunol. 2017;199(8):2976-2984. doi: 10.4049/jimmunol.1700105
  51. Zhou X, Li J, Sun JL. Oral nickel changes of intestinal microflora in mice. Curr Microbiol. 2019;76:590-59 doi: 10.1007/s00284-019-01664-1
 

Information about the authors:

Elena V Yausheva, Cand. Sci. (Biology), senior researcher at the Laboratory of Molecular Genetic Research and Metallomics in Livestock, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 Yanvarya St., Orenburg, 460000.

Elena A Sizova, Dr. Sci. (Biology), Head of the Centre for Nanotechnologies in Agriculture, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 Yanvarya St., Orenburg, 460000.

 

The article was submitted 23.10.2024; approved after reviewing 25.11.2024; accepted for publication 16.12.2024.

Download