Sizova EA, Kamirova AM, Yausheva EV, Shoshin DE, Pavlova MYu.

Animal Husbandry and Fodder Production. 2025. Vol. 108. No. 1. Р. 8-20.

doi:10.33284/2658-3135-108-1-8

Original article

Peculiarities of ruminal digestion in situ when ultrafine particles of silicon dioxide

and sulfur-containing compounds of organic and inorganic nature are introduced into the diet

of the Kazakh white-headed bulls

 

Elena A Sizova1, Ayna M Kamirova2, Elena V Yausheva3, Daniil E Shoshin4, Marina Yu Pavlova5

1,2,3,4,5Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia

1sizova.l78@yandex.ru, https://orcid.org/0000-0002-5125-5981

2ayna.makaeva@mail.ru, https://orcid.org/0000-0003-1474-8223

3vasilena56@mail.ru, https://orcid.org/0000-0002-1589-2211

4daniilshoshin@mail.ru, https://orcid.org/0000-0003-3086-681X

5marqo5677@mail.ru

 

Abstract. In the last few years, there has been a growing interest in the use of natural feed additives in animal feed. In particular, the prospects of using ultrafine particles as a substitute for antibiotics to change fermentation in the rumen and increase the efficiency of feeding ruminants are shown. The purpose of our study was to evaluate a sulfur-containing organomineral complex based on amino acids and Na2SO4 for the effectiveness of rumen digestion by the in situ method in its pure form and in combination  with  UFP  SiO2. The study was conducted on Kazakh white-headed bull calves with chronic fistula. 3 groups  were  formed for in situ testing: I – control; II – amino acid complex (tryptophan, lysine, methionine) + Na2SO4; III – amino acid complex (tryptophan, lysine, methionine) + Na2SO4 + UFP SiO2. The study showed an increase in the coefficient of digestibility in groups II and III by 3.7 and 2.6% compared with the control. The analysis of volatile fatty acids showed an increase in the concentrations of acetic, propionic, and butyric acids by 112, 77.7, and 76.8% in group I and by 44.3; 4.52% and 32.6% were in II, respectively. Changes in protein metabolism were associated with an increase in protein and non-protein nitrogen in group I compared with the control by 85.6% and 52.3%. The study demonstrated the beneficial effect of combined use of the studied substances on the processes of rumen digestion. The combined use of an ultrafine form of silicon dioxide, an amino acid complex, and sodium sulfate proved to be effective in stimulating rumen digestion.

Keywords: ruminants, feeding, ruminal digestion, elemental composition, in situ

Acknowledgments: the   work   was  supported   by   the  Russian  Science  Foundation,  Project No. 20-16-0078-P.

For citation: Sizova EA, Kamirova AM, Yausheva EV, Shoshin DE, Pavlova MYu. Peculiarities of ruminal digestion in situ when ultrafine particles of silicon dioxide and sulfur-containing compounds of organic and inorganic nature are introduced into the diet of the Kazakh white-headed bulls. Animal Husbandry and Fodder Production. 2025;108(1):8-20. (In Russ.). https://doi.org/10.33284/2658-3135-108-1-8

References

 

  1. Kosyan DB, Makaeva AM. The prospect of using silicon dioxide nanoparticles to increase digestibility of the feed substrate. Animal Husbandry and Fodder Production. 2018;101(4):8-12.
  2. Krasnoperov AS, Malkov SV, Vereshchak NA. Influence of silicon dioxide on immunological indicators of calves in endotoxycoses. Issues of Normative and Legal Regulation in Veterinary Medicine. 2018;4:234-239. doi: 10.17238/issn2072-6023.2018.4.234
  3. Kurepin AA, Lemeshevsky VO, Furs NL. Intensity of enzymatic processes in the logging at different levels of structural carbohydrates in the animal diet. Animal Agriculture and Veterinary Medicine. 2017;4:26-31.
  4. Mishurov AV. The influence of biologically active substances on sheep rumen metabolism. Bulletin of the Ryazan State Agrotechnological University named after P.A. Kostychev. 2021;13(2):35-41. doi: 36508/RSATU.2021.50.2.005
  5. Sehin AA, Surmach VN, Nozhinskaya ZI, Presnyak AR. The use of sodium sulfate in the diets of cows during the milking period. Agriculture - problems and prospects: collection of scientific papers. Grodno: GGAU. 2023;61:238-243.
  6. Ryadchikov VG, Soldatov AA, Kharitonov EL, Shlyakhova OG, Tantavi A, Komarova NS. The decomposition of feed protein is an important factor in the efficiency of nitrogen use and milk productivity of lactating cows. Efficient Animal Husbandry. 2019;3(151):42-48.
  7. Abbas W, Howard JT, Paz HA, Hales KE, Wells JE, Kuehn LA, Erickson GE, Spangler ML, Fernando SC. Influence of host genetics in shaping the rumen bacterial community in beef cattle. Sci Rep. 2020;10:15101. doi: 10.1038/s41598-020-72011-9
  8. Attia YA, Al-Harthi MA, Shafi ME, Abdulsalam NM, Nagadi SA, Wang J, Kim WK. Amino acids supplementation affects sustainability of productive and meat quality, survivability and nitrogen pollution of broiler chickens during the early life. Life (Basel). 2022;12(12):2100. doi: 10.3390/life12122100
  9. Bento CB, de Azevedo AC, Detmann E, Mantovani HC. Biochemical and genetic diversity of carbohydrate-fermenting and obligate amino acid-fermenting hyper-ammonia-producing bacteria from Nellore steers fed tropical forages and supplemented with casein. BMC Microbiol. 2015;15:28. doi: 10.1186/s12866-015-0369-9
  10. Bunglavan SJ, Garg AK, Dass RS, Shrivastava S. Use of nanoparticles as feed additives to improve digestion and absorption in livestock. Livest Res Int. 2014;2(3):36-47.
  11. Clemmons BA, Voy BH, Myer PR. Altering the gut microbiome of cattle: Considerations of host-microbiome interactions for persistent microbiome manipulation. Microb Ecol. 2019;77:523-536. doi: 10.1007/s00248-018-1234-9
  12. Colovic MB, Vasic VM, Djuric DM, Krstic DZ. Sulphur-containing amino acids: protective role against free radicals and heavy metals. Curr Med Chem. 2018;25(3):324-335. doi: 10.2174/0929867324666170609075434
  13. Duskaev GK, Karimov IF, Levakhin GI, Nurzhanov Baer, Rysaev Albert, Dusaeva H. Ecology of ruminal microorganisms under the influence of quercus cortex extract. Int J of GEOMATE. 2019;16(55):59-66. doi: 21660/2019.55.4673
  14. Gheller LS, Ghizzi LG, Marquesa JA, Takiya CS, Grigoletto NTS, Diasa MSS, Silva TBP, Nunes AT, Silva GG da, Fernandes LGX, Rennó L N, Rennó FP. Effects of organic acid-based products added to total mixed ration on performance and ruminal fermentation of dairy cows. Anim Feed Sci Technol. 2020;261:114406. doi: 10.1016/j.anifeedsci.2020.114406
  15. Hartman SJ, Genther-Schroeder ON, Hansen SL. Comparison of trace mineral repletion strategies in feedlot steers to overcome diets containing high concentrations of sulfur and molybdenum. J Anim Sci. 2018;96(6):2504-2515. doi: 10.1093/jas/sky088
  16. Hidayat C, Sumiati S, Jayanegara A, Wina E. Supplementation of dietary nano Zn-phytogenic on performance, antioxidant activity, and population of intestinal pathogenic bacteria in broiler chicken. Trop Anim Sci J. 2021;44(1):90-99. doi: 10.5398/tasj.2021.44.1.90
  17. Jami E, Mizrahi I. Composition and similarity of bovine rumen microbiota across individual animals. PLoS ONE. 2012;7(3):e33306. doi: 10.1371/journal.pone.0033306
  18. Kong F, Gao Y, Tang M, Fu T, Diao Q, Bi Y, Tu Y. Effects of dietary rumen-protected Lys levels on rumen fermentation and bacterial community composition in Holstein heifers. Appl Microbiol Biotechnol. 2020;104(15):6623-6634. doi: 10.1007/s00253-020-10684-y
  19. Li F, Li C, Chen Y, Liu J, Zhang C, Irving B, Fitzsimmons C, Plastow G, Guan LL. Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle. Microbiome. 2019;7:92. doi: 10.1186/s40168-019-0699-1
  20. Li Z, Wang X, Zhang  Y,  Yu Z, Zhang T, Dai X, Pan X, Jing R, Yan Y, Liu Y, Gao S, Li F, Huang Y, Tian J, Yao J, Xing X, Shi T, Ning J, Yao B, Huang H, Jiang Y. Genomic insights into the phylogeny and biomass-degrading enzymes of rumen ciliates. The ISME J. 2022;16(12):2775-2787. doi: 10.1038/s41396-022-01306-8
  21. Liaqat R, Fatima S, Komal W, Minahal Q, Hussain AS. Dietary supplementation of methionine, lysine, and tryptophan as possible modulators of growth, immune response, and disease resistance in striped catfish (Pangasius hypophthalmus). PLoS One. 2024;19(4):e0301205. doi: 10.1371/journal.pone.0301205
  22. Makaeva A, Atlanderova K, Miroshnikov S, Sizova E. Rumen microbiome of cattle after introduction of ultrafine particles in feed. FEBS Open Bio. 2019;9(S1):416. doi:10.1002/2211-5463.12675
  23. Malmuthuge N, Guan LL. Understanding host-microbial interactions in rumen: searching the best opportunity for microbiota manipulation. J Animal Sci Biotechnol. 2017;8:8. doi: 10.1186/s40104-016-0135-3
  24. McSweeney CS, Denman SE. Effect of sulfur supplements on cellulolytic rumen micro-organisms and microbial protein synthesis in cattle fed a high fibre diet. J Appl Microbiol. 2007;103(5):1757-65. doi: 10.1111/j.1365-2672.2007.03408.x
  25. Meenongyai W, Rasri K, Rodjapot S, Duangphayap T, Khejornsart P, Wongpanit K, Phongkaew P, Bashar A, Islam Z. Effect of coated cysteamine hydrochloride and probiotics supplemented alone or in combination on feed intake, nutrients digestibility, ruminal fermentation, and blood metabolites of Kamphaeng Saen beef heifers. Trop Anim Health Prod. 2023;55:69-78. doi: 1007/s11250-023-03499-2
  26. Mohd Yusof H, Mohamad R, Zaidan UH, Abdul Rahman NA. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J Anim Sci Biotechnol. 2019;10:57. doi: 10.1186/s40104-019-0368-z
  27. Morsy EA, Hussien AM, Ibrahim MA, Farroh KY, Hassanen EI. (2021). Cytotoxicity and genotoxicity of copper oxide nanoparticles in chickens. Biol Trace Elem Res. 2021;199:4731-4745. doi: 1007/s12011-021-02595-4
  28. Ojha L, Malik R, Mani V, Singh AK, Singh M. Influence of silicon supplementation on growth, immunity, antioxidant, hormonal profile and bone health biomarkers in pre-ruminant crossbred calves. Biol Trace Elem Res. 2025;203(1):187-198. doi: 1007/s12011-024-04178-5
  29. Oliveira LN, Pereira MAN, Oliveira CDS, Oliveira CC, Silva RB, Pereira RAN, Devries TJ, Pereira MN. Effect of low dietary concentrations of Acacia mearnsii tannin extract on chewing, ruminal fermentation, digestibility, nitrogen partition, and performance of dairy cows. J Dairy Sci. 2023;106(5):3203-3216. doi: 3168/jds.2022-22521
  30. Patra A, Lalhriatpuii M. Progress and prospect of essential mineral nanoparticles in poultry nutrition and feeding – a review. Biol Trace Elem Res. 2020;197(1):233-253. doi: 10.1007/s12011-019-01959-1
  31. Shin H, Jin X, Gim M, Kim Y. Inclusion of dietary nontoxic sulfur on growth performance, immune response, sulfur amino acid content and meat characteristics in growing-finishing pigs. Anim Biosci. 2023;36(5):776-784. doi: 5713/ab.22.0418
  32. Soltis MP, Moorey SE, Egert-mclean AM, Voy BH, Shepherd EA, Myer PR. Rumen biogeographical regions and microbiome variation. Microorganisms. 2023;11(3):747-758. doi: 10.3390/microorganisms11030747
  33. Stivari TSS, Raineri C, Sartorello GL, Gameiro AH, Silva JBA. Aditivos enzimáticos na alimentação de ruminantes: estratégia para a produção animal. PUBVET. 2014;8:1283-1415.
  34. Varela AMG, Lima JR DM,  Araújo  TLAC,  Souza  JR JBF, Costa LLM, Pereira MWF, Batista NV, Melo VLL, Lima PO. The effect of propolis extract on milk production and composition, serum biochemistry, and physiological parameters of heat-stressed dairy cows. Trop Anim Health Prod. 2023;55:244-251. doi: 1007/s11250-023-03647-8
  35. Zhao Y, Xie B, Gao J, Zhao G. Dietary supplementation with sodium sulfate improves rumen fermentation, fiber digestibility, and the plasma metabolome through modulation of rumen bacterial communities in steers. Appl Environ Microbiol. 2020;86(22):e01412-20. doi: 10.1128/AEM.01412-20
  36. Zou S, Ji S, Xu H, Wang M, Li B, Shen Y, Li Y, Gao Y, Li J, Cao Y, Li Q. Rumen-Protected lysine and methionine supplementation reduced protein requirement of Holstein bulls by altering nitrogen metabolism in liver. Animals (Basel). 2023;13(5):843. doi: 10.3390/ani13050843

Information about the authors:

Elena A Sizova, Dr. Sci. (Biology), Head of the Department of Animal Physiology, Biochemistry and Morphology, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 Yanvarya St., Orenburg, 460000, tel.: 8-912-344-99-07.

Ayna M Kamirova, Cand. Sci. (Biology), Researcher of the Department of Animal Physiology, Biochemistry and Morphology, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 Yanvarya St., Orenburg, 460000, tel.: 8-922-548-44-89.

Elena V Yausheva, Cand. Sci. (Biology), Senior Researcher, Acting Head of Laboratory of Molecular Genetic Research and Metallomics in Animal Husbandry, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 Yanvarya St., Orenburg, 460000, tel.: 8-987-850-07-15.

Daniil E Shoshin, Postgraduate student, Laboratory Researcher of the Department of Animal Physiology, Biochemistry and Morphology, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 Yanvarya St., Orenburg, 460000, tel.: 8-965-932-53-67.

Marina Yu Pavlova, Cand. Sci. (Biology), Researcher, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 Yanvarya St., Orenburg, 460000, tel.: 8-922859-01-34.

The article was submitted 22.10.2024; approved after reviewing 03.03.2025; accepted for publication 17.03.2025.

Download