Artemyeva OA, Logvinova TI, Nikanova DA.

Animal Husbandry and Fodder Production. 2025. Vol. 108. No. 1. Р. 128-144.

doi:10.33284/2658-3135-108-1-128

Review article

The yeast Kluyveromyces and its biological potential

 

Olga A Artemyeva1, Tatyana I Logvinova2, Daria A Nikanova3

1,2,3Federal Research Center for Animal Husbandry named after Academy Member LK Ernst, Dubrovitsy, Russia

1vijmikrob@mail.ru, https://orcid.org/0000-0001-7706-4182

2vijmikrob@mail.ru, https: //orcid.org/0000-0001-7075-544X

3vijmikrob@mail.ru, https://orcid.org/0000-0001-5164-244X

 

Abstract. Today, it is relevant to use feed additives of microbial origin based on the simplest fungi in the nutrition of farm animals and poultry. The exclusion of feed antibiotics has provoked interest in feed yeast and the study of the effect of yeast cultures on the gastrointestinal tract, microflora and rumen function.

Kluyveromyces is a new non-traditional food and feed yeast that is isolated from various habitats, such as kefir grains, fermented dairy products, waste water from the sugar industry, and plants. A unique set of useful properties, namely rapid growth, thermotolerance and a wide range of substrates makes these yeasts especially attractive for use in various sectors of the food, pharmaceutical and biotechnology industries. Dairy yeasts are promising probiotic microorganisms that can break down lactose. In this regard, it is relevant to study the dairy yeast Kluyveromyces as a reliable source of yeast cells for the production of various enzymes, bioethanol, cellular proteins, probiotics, fructose and fructooligosaccharides, as well as vaccines with natural properties.

Keywords: yeast Kluyveromyces, feed additive, probiotic microorganisms, enzymes

Acknowledgments: the work was performed in accordance to the plan of research works for 2024 Federal  Research Center for Animal Husbandry named after Academy Member LK Ernst 124020200032-4 (No. FGGN-2024-0016).

For citation: Artemyeva OA, Logvinova TI, Nikanova DA. The yeast Kluyveromyces and its biological potential (review). Animal Husbandry and Fodder Production. 2025;108(1):128-144. (In Russ.). https://doi.org/10.33284/2658-3135-108-1-128

References

  1. Lyutova LV, Naumov GI, Shnyreva AV, Naumova ES. Intraspecific polymorphism of the yeast Kluyveromyces lactis: genetic populations. Microbiology. 2022;91(4):480-491. doi: 10.31857/S002636562230019X
  2. Gulbet AE, Amerkhanov KhA, Soloveva OI. Quality of colostrum and milk from cows of different breeds when using Zoonorm probiotic. Animal Husbandry and Fodder Production. 2024;107(2):116-127. doi: 10.33284/2658-3135-107-2-116
  3. Denev SA, Peeva TZ, Radulova P, Stancheva P, Staykova G, Beev G, Todorova P, Tchobanova S. Yeast cultures in ruminant nutrition. Bulg J Agric Sci. 2007;13:357-374.
  4. Gulits AF, Miroshnikova EP, Miroshnikov SA, Mingazova MS. Towards an understanding of the  effect  of  probiotic  preparations  on  growth  and hematological parameters of blood of broiler chickens. Animal Husbandry and Fodder Production. 2023;106(4):191-202. doi: 10.33284/2658-3135-106-4-191
  5. Lyutova LV, Naumova ES. Comparative analysis of the fermentation of lactose and its components, glucose and galactose, by interstrain hybrids of dairy yeast Kluyveromyces lactis. Biotechnology. 2023;39(1):3-11. doi: 10.56304/S0234275823010064
  6. Mikolajchik IN, Morozova LA, Stupina ES. Efficiency of the latest yeast probiotics in the correction of calf feeding. Journal of Dairy and Beef Cattle Breeding. 2017;5:23-26.
  7. Naumov GI. Genetics of lactose utilization polymorphism in the yeast Kluyveromyces marxianus. Doklady Biological Sciences. 2006;409(3):317-319.
  8. Fomenko IA, Degtyarev IA, Ivanova LA, Mashentseva NG. A Technology for obtaining a protein  concentrate  from  yeast  biomass  of  Kluyveromyces  Marxianus Van  Der Walt (1965). Sel’skokhozyaistvennaya biologiya [Agricultural Biology]. 2021;56(6):1172-1182. doi: 10.15389/agrobiology.2021.6.1172eng
  9. Yakhin IR, Rytchenkova OV. Investigation of the growth of yeast KLUYVEROMYCES LACTIS and KLUYVEROMYCES MARXIANUS on waste from dairy processing enterprises. Advances in Chemistry and Chemical Technology. 2011;25(10-126):33-36.
  10. Abdolhosseinzadeh E, Dehnad AR, Pourjafar H, Homayouni A, Ansari F. The production of probiotic Scallion yogurt: viability of Lactobacillus acidophilus freely and microencapsulated in the product. Carpath J Food Sci Technol. 2018;10(3):72-80.
  11. Aksu Z, Dönmez G. The use of molasses in copper (II) containing wastewaters: effects on growth and copper (II) bioaccumulation properties of Kluyveromyces marxianus. Proc Biochem. 2000;36(5):451-458. doi: 10.1016/S0032-9592(00)00234-X
  12. Anand S, Singh KS, Aggarwal D. Expanding avenues for probiotic yeast: Saccharomyces boulardii. Microbial Cell Factories. USA: CRC Press. 2018;125-47. doi: 10.1201/b22219-7
  13. Anisha GS. β-Galactosidases. In: Pandey A, Negi N, Soccol CR, editors. Current Developments in Biotechnology and Bioengineering. Amsterdam: Elsevier. 2017;395-421. doi: 10.1016/B978-0-444-63662-1.00017-8
  14. Aragon G, Graham DB, Borum M, Doman DB. Probiotic therapy for irritable bowel syndrome. Gastroenterol Hepatol. 2010;6(1):39-44.
  15. Arevalo-Villena M, Briones-Perez A, Corbo MR, Sinigaglia M, Bevilacqua A. Biotechnological application of yeasts in food science: starter cultures, probiotics and enzyme production. J Appl Microbiol. 2017;123(6):1360-72. doi: 10.1111/jam.13548
  16. Aziz Homayouni-Rad, Aslan Azizi, Parvin Oroojzadeh and Hadi Pourjafar. Kluyveromyces marxianus as a probiotic yeast: a mini-review. Current Nutrition & Food Science. 2020;16(8):1163-1169. doi: 10.2174/1573401316666200217113230
  17. Barranco-Florido E, García-Garibay M, Gómez-Ruiz L, Azaola A. Immobilization system of Kluyveromyces marxianus cells in barium alginate for inulin hydrolysis. Proc Biochem. 2001;37(5):513-519. doi: 10.1016/S0032-9592(01)00235-7
  18. Bartkevičiute D, Sasnauskas K. Studies of yeast Kluyveromyces lactis mutations conferring super-secretion of recombinant proteins. Yeast. 2003;20(1):1-11. doi: 10.1002/yea.935
  19. Bastani P, Homayouni A, Norouzi-Panahi L, et al. The mechanisms of immune system regulation by probiotics in immunerelated diseases. J Pharm Nutr Sci. 2016;6(3):105-111. doi: 10.6000/1927-5951.2016.06.03.4
  20. Belem MAF, Lee BH. Fed-batch fermentation to produce ologonucleotides from Kluyveromyces marxianus grown on whey. Proc Biochem. 1999;34:501-509.
  21. Belem MAF, Lee BH. Production of  bioingredients  from  Kluyveromyces marxianus  grown  on  whey:  an  alternative.  Crit  Rev  Food Sci Nut. 1998;38(7):565-598. doi: 10.1080/10408699891274318
  22. Bellaver LH, de Carvalho NMB, Abrahão-Neto J, Gombert AK. Ethanol formation and enzyme activities around glucose-6-phosphate in Kluyveromyces marxianus CBS 6556 exposed to glucose or lactose excess. FEMS Yeast Res. 2004; 4(7):691-698. doi: 10.1016/j.femsyr.2004.01.004
  23. Bilal M, Xu S, Iqbal HM, Cheng H. Yarrowia Lipolytica as an emerging biotechnological chassis for functional sugars biosynthesis. Crit Rev Food Sci Nutr. 2021;61(4):535-552. doi: 10.1080/10408398.2020.1739000
  24. Bilal M, Ji L,  Xu Y,  Xu S,  Lin Y, Iqbal HMN, Cheng H. Bioprospecting Kluyveromyces marxianus as a robust host for industrial biotechnology. Front Bioeng Biotechnol. 2022:10:851768. doi: 10.3389/fbioe.2022.851768
  25. Blank LM, Lehmbeck F, Sauer U. Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Res. 2005;5(6-7):545-558. doi: 10.1016/j.femsyr.2004.09.008
  26. Bolla PA, Serradell M de los Angeles, de Urraza PJ, de Antoni GL. Effect of freeze-drying on viability and in vitro probiotic properties of a mixture of lactic acid bacteria and yeasts isolated from kefir. J Dairy Res. 2011;78(1):15-22. doi: 10.1017/S0022029910000610
  27. Chandra R, Castillo-Zacarias C, Delgado P, Parra-Saldivar R. A biorefinery approach for dairy wastewater treatment and product recovery towards establishing a biorefinery complexity index. J Clean Prod. 2018;183:1184-1196. doi: 10.1016/j.jclepro.2018.02.124
  28. Cho YJ, Kim DH, Jeong D, Seo KH, Jeong HS, Lee HG, et al. Characterization of yeasts isolated from kefir as a probiotic and its synergic interaction with the wine byproduct grape seed flour/extract. Lwt. 2018;90:535-539. doi: 10.1016/j.lwt.2018.01.010
  29. Crafack M, Mikkelsen MB, Saerens S, et al. Influencing cocoa flavour using Pichia kluyveri and Kluyveromyces marxianus in a defined mixed starter culture for cocoa fermentation. In J Food Microbiol. 2013;167(1):103-116. doi: 10.1016/j.ijfoodmicro.2013.06.024
  30. Cruz-Guerrero A, García-Peña I, Bárzana E, García-Garibay M, Gómez-Ruiz L. Kluyveromyces marxianus CDBB-L-278: a wild inulinase hyperproducing strain. J Ferm Bioeng. 1995;80(2):159-163. doi: 10.1016/0922-338x(95)93212-3
  31. Diaz-Vergara L, Pereyra CM, Montenegro M, Pena GA, Aminahuel CA, Cavaglieri LR. Encapsulated whey-native yeast Kluyveromyces marxianus as a feed additive for animal production. Food Addit Contam: Part A. 2017;34(5):750-759. doi: 10.1080/19440049.2017.1290830
  32. Ferreira I, Pinho O,  Vieira E,  Tavarela JG.  Brewer’s  Saccharomyces  yeast  biomass: characteristics  and  potential  applications.  Trends in Food Science & Technology. 2010;21(2):77-84. doi: 10.1016/j.tifs.2009.10.008
  33. Fleet G. The commercial and community significance of yeasts in food and beverage production. In: Querol A, Fleet G, editors. Yeasts in food and beverages. UK: Springer; 2006:1-12. doi: 10.1007/978-3-540-28398-0_1
  34. Fonseca GG, Gombert AK, Heinzle E, Wittmann C. Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source. FEMS Yeast Res. 2007;7:422-435. doi: 10.1111/j.1567-1364.2006.00192.x
  35. Fonseca GG, Heinzle E, Wittmann C., Gombert Andreas K. The yeast Kluyveromyces  marxianus and its biotechnological potential. Appl Microbiol Biotechnol. 2008;79:339-354. doi: 10.1007/s00253-008-1458-6
  36. Garcia-Tejedor A, Sanchez-Rivera L, Castellу-Ruiz M, Recio I, Salom JB, Manzanares P. Novel antihypertensive lactoferrinderived peptides produced by Kluyveromyces marxianus: gastrointestinal stability profile and in vivo angiotensin I-converting enzyme (ACE) inhibition. J Agric Food Chem. 2014;62(7):1609-1616. doi: 10.1021/jf4053868
  37. Gélinas P, Barrette J. Protein enrichment of potato processing waste through yeast fermentation. Bioresource Technology. 2007;98(5):1138-1143. doi: 10.1016/j.biortech.2006.04.021
  38. Gellissen G, Hollenberg CP. Application of yeasts in gene expression studies: A comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis—a review. Gene. 1997;190(1):87-97. doi: 10.1016/s0378-1119(97)00020-6
  39. Ghaly AE, Kamal MA.  Submerged  yeast fermentation of acid cheese whey for protein   production   and  pollution  potential  reduction. Water  Research. 2004;38(3):631-644. doi: 10.1016/j.watres.2003.10.019
  40. Golubev W. Antagonistic interactions among yeasts. In: Gábor P, Carlos R, editors. Biodiversity and ecophysiology of yeasts. UK: Springer; 2006:197-219. doi: 10.1007/3-540-30985-3_10
  41. Grba S, Stehlik-Tomas V, Stanzer D, Vahcic N, Škrlin A. Selection of yeast strain Kluyveromyces marxianus for alcohol and biomass production on whey. Chem Biochem Eng Q. 2002;16(1):13-16.
  42. Hensing MC, Rouwenhorst RJ, Heijnen JJ, van Dijken JP, Pronk JT. Physiological and technological aspects of large-scale heterologous-protein production with yeasts. Antonie van Leeuwenhoek. 1995;67:261-279. doi: 10.1007/BF00873690
  43. Homayoni Rad A, Mehrabany EV, Alipoor B, Mehrabany LV, Javadi M. Do probiotics act more efficiently in foods than in supplements? Nutrition. 2012;28(7-8):733-736. doi: 10.1016/j.nut.2012.01.012
  44. Homayouni Rad A, Torab R, Ghalibaf M, Norouzi S, Mehrabany EV. Might patients with immune-related diseases benefit from probiotics? Nutrition. 2013;29(3):583-586. doi: 10.1016/j.nut.2012.10.008
  45. Hong J, Wang Y, Kumagai H, Tamaki H. Construction of thermotolerant yeast expressing thermostable cellulase genes. J Biotechnol. 2007;130(2):114-123. doi: 10.1016/j.jbiotec.2007.03.008
  46. Hoshida H, Kidera K, Takishita R, Fujioka N, Fukagawa T, Akada R. Enhanced production of extracellular inulinase by the yeast Kluyveromyces marxianus in xylose catabolic state. J Biosci Bioeng. 2018;125(6):676-681. doi: 10.1016/j.jbiosc.2017.12.024
  47. Husain Q. β Galactosidases and their potential applications: a review. Crit Rev Biotechnol. 2010;30(1):41-62. doi: 10.3109/07388550903330497
  48. Isenschmid A, Marison IW,  von Stockar U The influence of pressure and temperature of compressed CO2 on the survival of yeast cells. J Biotechnol. 1995;39(3):229-237.        doi: 10.1016/0168-1656(95)00018-l
  49. Lane MM , Burke N,  Karreman  R, Wolfe Kenneth H,  O'Byrne Conor P, Morrissey John P. Physiological and metabolic diversity in the yeast Kluyveromyces marxianus. Antonie Van Leeuwenhoek. 2011;100(4):507-519. doi: 10.1007/s10482-011-9606-x
  50. Lane MM, Morrissey J. Kluyveromyces marxianus: а yeast emerging from its sister's shadow. Fungal Biology Reviews. 2010;24(1-2):17-26. doi: 10.1016/J.FBR.2010.01.001
  51. Lukondeh T, Ashbolt NJ, Rogers PL. Evaluation of Kluyveromyces marxianus FII 510700 grown on a lactose-based medium as a source of a natural bioemulsifier. J Ind Microbiol Biotechnol. 2003;30(12):715-720. doi: 10.1007/s10295-003-0105-6
  52. Maccaferri S, Klinder A, Brigidi P, Cavina P, Constable A. Potential probiotic Kluyveromyces marxianus B0399 modulates the immune response in CACO-2 cells and peripheral blood mononuclear cells and impacts the human gut microbiota in an in vitro colonic model system. Applied and Environmental Microbiology. 2012;78(4):956-964. doi: 10.1128/AEM.06385-11
  53. Mamaev D, Zvyagilskaya R. Yarrowia lipolytica: a multitalented yeast species of ecological significance. FEMS Yeast Res. 2021;21(2):foab008. doi: 10.1093/femsyr/foab008
  54. Matassa S, Boon N,  Pikaar I,  Verstraete W.  Microbial  protein:  future  sustainable  food  supply  route  with  low  environmental  footprint. Microbial Biotechnology. 2016;9(5):568-575. doi: 10.1111/1751-7915.12369
  55. Morrissey JP, Etschmann MM, Schrader J, de Billerbeck GM. Cell factory applications of the yeast kluyveromyces marxianus for the biotechnological production of natural flavour and fragrance molecules. Yeast. 2015;32(1):3-16. doi: 10.1002/yea.3054
  56. Øverland M, Karlsson A, Mydland LT, Romarheim OH, Skrede A. Evaluation of Candida utilis, Kluyveromyces marxianus and Saccharomyces cerevisiae yeasts as protein sources in diets for Atlantic salmon (Salmo salar). Aquaculture. 2013;402-403:1-7. doi: 10.1016/j.aquaculture.2013.03.016
  57. Panuwatsuk W, da Silva NA. Evaluation of pKD1-based plasmid systems for heterologous protein production in Kluyveromyces lactis. Appl Microbiol Biotechnol. 2002;58:195-201. doi: 10.1007/s002530100815
  58. Pecota DC, Rajgarhia V, da Silva NA. Sequential gene integration for the engineering of Kluyveromyces marxianus. J Biotechnol. 2007;127(3):408-416. doi: 10.1016/j.jbiotec.2006.07.031
  59. Pendon MD, Madeira JV, Romanin DE, Rumbo M, Gombert AK, Garrote GL. A biorefinery concept for the production of fuel ethanol, probiotic yeast, and whey protein from a byproduct of the cheese industry. Appl Microbiol Biotechnol. 2021;105(9):3859-3871. doi: 10.1007/s00253-021-11278-y
  60. Pérez-Torrado R, Gamero E, Gómez-Pastor R, Garre E, Aranda A, Matallana E. Yeast bio-mass, an optimised product with myriad applications in the food industry. Trends in Food Science & Technology. 2015;46(2):167-175. doi: 10.1016/j.tifs.2015.10.008
  61. Pessoa JrA, Vitolo M. Inulinase from Kluyveromyces marxianus: culture medium composition  and  enzyme extraction. Braz J Chem Eng. 1999;16(3):237-245.           doi: 10.1590/S0104-66321999000300003
  62. Porro D, Sauer M, Branduardi P, Mattanovich D. Recombinant protein production in yeasts. Mol Biotechnol. 2005;31:245-259. doi: 10.1385/MB:31:3:245
  63. Rakowska R, Sadowska A, Dybkowska E, Swiderski F. Spent yeast as natural source of func-tional food additives. Roczniki Państwowego Zakładu Higieny. 2017;68(2):115-121.
  64. Rouwenhorst RJ, Visser LE, van der Baan AA, Scheffers WA, van Dijken JP. Production, distribution, and kinetic properties of inulinase in continuous culture of Kluyveromyces marxianus CBS 6556. Appl Environ Microbiol. 1988;54(5):1131-1137. doi: 10.1128/aem.54.5.1131-1137.1988
  65. Saber A, Alipour B, Faghfoori Z, Khosroushahi AY. Secretion metabolites of dairy Kluyveromyces marxianus as41 isolated as probiotic, induces apoptosis in different human cancer cell lines and exhibit antipathogenic effects. J Funct Foods. 2017;34:408-421. doi: 10.1016/j.jff.2017.05.007
  66. Shurson GC. Yeast and yeast derivatives in feed additives and ingredients: Sources, characteris-tics, animal responses, and quantification methods. Animal Feed Science and Technology. 2018;235:60-76. doi: 10.1016/j.anifeedsci.2017.11.010
  67. Skountzou P, Soupioni M,  Bekatorou  A,  Kanellaki M, Koutinas AA, Marchant R, Banat IM. Lead (II) uptake during baker’s yeast production by aerobic fermentation of molasses. Proc Biochem. 2003;38(10):1479-1482. doi: 10.1016/S0032-9592(03)00023-2
  68. Souciet J-L, Artiguenave MAF, Blandin G, Bolotin-Fukuhara M, Bon E, Brottier P, et al. Genomic exploration of the hemiascomycetous yeasts: 1. A set of yeast species for molecular evolution studies. FEBS Letters. 2000;487(1):3-12. doi: 10.1016/s0014-5793(00)02272-9
  69. Suzuki T, Hoshino T, Matsushika A. Draft genome sequence of Kluyveromyces marxianus strain DMB1, isolated from sugarcane bagasse hydrolysate. Genome Announc. 2014;2(4):e00733-14. doi: 10.1128/genomeA.00733-14
  70. van Dijken JP, Weusthuis RA, Pronk JT. Kinetics of growth and sugar consumption in yeasts. Antonie van Leeuwenhoek. 1993;63:343-352. doi: 10.1007/BF00871229
  71. van Ooyen AJ, Dekker P, Huang M, Olsthoorn MM, Jacobs DI, Colossi PA, Taron CH. Heterologous protein production in the yeast Kluyveromyces lactis. FEMS Yeast Res. 2006;6(3):381-392. doi: 10.1111/j.1567-1364.2006.00049.x
  72. Varela JA, Gethins L, Stanton C, Ross P, Morrissey JP. Applications of Kluyveromyces marxianus in biotechnology. In: Satyanarayana T, Kunze G, editors. Yeast diversity in human welfare. UK: Springer 2017;439-453. doi: 10.1007/978-981-10-2621-8_17
  73. Ventura M, et al. Genome-scale analyses of health-promoting bacteria: probiogenomics. Nat Rev Microbiol. 2009;7:61-71. doi: 10.1038/nrmicro2047
  74. Wagner JM, Alper HS. Synthetic biology and molecular genetics in non-conventional yeasts: current tools and future advances. Fungal Genet Biol. 2016;89:126-136. doi: 10.1016/j.fgb.2015.12.001
  75. Wang W, Li Z, Lv Z, Zhang B, Lv H, Guo Y. Effects of Kluyveromyces marxianus supplementation on immune responses, intestinal structure and microbiota in broiler chickens. PloS One. 2017;12(7):e0180884. doi: 10.1371/journal.pone.0180884
  76. Wésolowski-Louvel M, Breunig KD, Fukuhara H. Kluyveromyces lactis: genetics, biochemistry and molecular biology of non-conventional yeast. Berlin, Heidelberg, New York: Springer-Verlag.1996.
  77. Xie Y, Zhang H, Liu H, Xiong L, Gao X, Jia H, Han T. Hypocholesterolemic effects of Kluyveromyces Marxianus M3 isolated from tibetan mushrooms on diet-induced hypercholesterolemia in rat. Braz J Microbiol. 2015;46(2):389-395. doi: 10.1590/s1517-838246220131278
  78. Yadav JSS, Bezawada J, Ajila CM, Yan S, Tyagi RD, Surampalli RY. Mixed culture of Kluyveromyces marxianus and Candida krusei for single-cell protein production and organic load removal from whey. Bioresour Technol. 2014;164:119-127. doi: 10.1016/j.biortech.2014.04.069
  79. Yan Z, Liu X,  Yuan  Y,  Liao Y,  Li X.  Deodorization  study  of  the  swine  manure  with two yeast strains. Biotechnology and Bioprocess Engineering. 2013;18(1):135-143. doi: 10.1007/s12257-012-0313-x
  80. Zhou J, Liu X, Jiang H, Dong M. Analysis of the microflora in Tibetan kefir grains using denaturing gradient gel electrophoresis. Food Microbiol. 2009;26(8):770-775. doi: 10.1016/j.fm.2009.04.009

 

Information about the authors:

Olga A Artemyeva, Cand. Sci. (Biology), Leading Researcher at the Microbiology Laboratory, Federal Research Center of Animal Husbandry – VIZ named after Academician L.K. Ernst, 60 Dubrovitsy village, Podolsk City district, Moscow region, 142132, tel.: 8(4967)651133.

Tatyana I Logvinova, Cand. Sci. (Biology), Researcher at the Microbiology Laboratory, Federal Research Center of Animal Husbandry – VIZ named after Academician L.K. Ernst, 60 Dubrovitsy village, Podolsk City district, Moscow region, 142132, tel.: 8(4967)651133.

Daria A Nikanova, Cand. Sci. (Biology), Senior Researcher at the Microbiology Laboratory, Federal Research Center of Animal Husbandry – VIZ named after Academician L.K. Ernst, 60 Dubrovitsy village, Podolsk City district, Moscow region, 142132, tel.: 8(4967)651133.

The article was submitted 15.10.2024; approved after reviewing 14.01.2025; accepted for publication 17.03.2025.

Download