Kholodilina TN, Yausheva EV, Sizova EA, Shoshin DE, Ryazantseva KV, Nechitailo KS, Klimova TA, Mustafina AS.

Animal Husbandry and Fodder Production. 2025. Vol. 108. No. 3. Р. 64-81.

doi:10.33284/2658-3135-108-3-64

Original article

The effect of calcium сhloride on the taxonomic profile of the cecal microbiota of laying hens and the absorption of feed nutrients

Tatyana N Kholodilina1,9, Elena V Yausheva2,10, Elena A. Sizova3,11,

Daniel E Shoshin4,12, Kristina V Ryazantseva5,13, Ksenia S Nechitailo6,14,

Tatyana A Klimova7, Alexandra S Mustafina8

1,2,3,4,5,6,7,8Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia

9,10,11,12,13,14Orenburg state university, Orenburg, Russia

1,9xolodilina@rambler.ru, https://orcid.org/0000-0002-3946-8247

2,10vasilena56@mail.ru, https://orcid.org/0000-0002-1589-2211

3,11sizova.l78@yandex.ru, https://orcid.org/0000-0002-5125-5981

4,12daniilshoshin@mail.ru, https://orcid.org/0000-0003-3086-681X

5,13reger94@bk.ru, https://orcid.org/0000-0001-5134-0396

6,14k.nechit@mail.ru, https://orcid.org/0000-0002-8755-414X

7klimovat91@mail.ru, https://orcid.org/0000-0003-4298-1663

8vshivkovaas@mail.ru, https://orcid.org/0000-0001-9525-2822

Abstract. The need for calcium for laying hens is a major topic of discussion in the poultry industry. The most common source of calcium in the diet is limestone, which shows reduced solubility during neutralization in the small intestine, where most of the absorption takes place. The amount and source of bioavailable calcium for microbiological processes determines the degree of absorption of other nutrients. The aim of our study was to study the effect of various calcium sources on the taxonomic profile of the cecum microbiota and the absorption of feed nutrients. The research was conducted on laying hens of the Hayesex Brown cross. 2 groups were formed: the I experimental group received limestone flour as a source of calcium, the II experimental group received a solution of calcium chloride, the studies were conducted from 15 to 20 weeks. There was a significant increase in the digestibility of crude protein and crude fat in the II experimental group by 11.4% and 2.36% (P≤0.05) compared with control. Calcium absorption was 3.3% more effective (P≤0.05) in the II experimental group with constant phosphorus availability, which had a positive effect on the synthesis of propionic acid (higher by 13.9 %, P≤0.05), butyric acid (higher by 4.98%, P≤0.05), and acetic acid (higher by 4.32%, P≤0.05) acids. The replacement of limestone flour with calcium chloride in the diet of laying hens of group II led to an increase in the proportion of bacteria of the taxa Limosilactobacillus by 4.47% (P≤0.05), unclassified Oscillospiraceae by 2.68% (P≤0.05), Oscillospiraceae by 3.97% (P≤0.05), Alistipes by 5.59%, (P≤0.05). The studies revealed the positive effect of calcium chloride on the cecum microbiome, which is confirmed by a significant correlation between probiotic microorganisms, in particular the taxon Limosilactobacillus, and the absorption of calcium, crude fat, and propionic acid concentration in the cecum.

Keywords: laying hens, feeding, calcium carbonate, caecum microbiota, nutrient absorption

Acknowledgments: the   work   was  supported  by  the  Russian  Science  Foundation,  Project No. 23-16-00165.

For citation: Kholodilina TN, Yausheva EV, Sizova EA, Shoshin DE, Ryazantseva KV, Nechitailo KS, Klimova TA, Mustafina AS. The effect of calcium сhloride on the taxonomic profile of the cecal microbiota of laying hens and the absorption of feed nutrients. Animal Husbandry and Fodder Production. 2025;108(3):64-81. (In Russ.)]. https://doi.org/10.33284/2658-3135-108-3-64

References

  1. Rodionova NS, Alekseeva TV, Kustov VYu, Popov ES, Kalgina YuO. Aspects of obtaining forms of soluble organic calcium from the egg shell. Hygiene and Sanitation. 2018;97(8):762-766. doi: 10.18821/0016-9900-2018-97-8-762-766
  2. State Standard 15-2016. Feed, mixed feed, feed raw materials. Methods for determining the mass fraction of crude fat. Implementation date 01.01.2018. Moscow: Standartinform; 2020:9 p.
  3. State Standard 13496.4-2019. Fodder, mixed fodder and raw mixed fodder. Methods of nitrogen and crude protein determination. Implementation date 08.2020. Moscow: Standartinform; 2019:15 p.
  4. State Standard 26226-95. Feed, mixed feed, feed raw materials. Methods for the determination of crude ash. Implementation date 01.1997. Minsk: Interstate Council on Standardization, Metrology and Certification; 2003:5 р.
  5. State Standard 31675-2012. Methods for determining the crude fiber content using intermediate filtration. Implementation date 01.07.2013. Moscow: Standartinform; 2020:9 p.
  6. Grabeklis VV, Delyukina OV, Savko SA. Interaction of essential elements and gut microbiota: a literature review. Trace Elements in Medicine. 2023;24(3):12-21. doi: 10.19112/2413-6174-2023-24-3-12-21
  7. Gubaidullina IZ, Vershinina IA, Ivanishcheva AP. Influence of various forms of chromium on biochemical parameters, antioxidant status of the body and microbiological composition of the intestines of broiler chickens. Animal Husbandry and Fodder Production. 2023;106(1):215-227. https://doi.org/10.33284/2658-3135-106-1-215
  8. Gromova OA, Torshin IYu, Pronin AV, Egorova EYu, Volkov AYu. A differentiated approach to the selection of second-generation soluble calcium preparations. The Attending Physician. 2014;11:60.
  9. Kazaev KA, Kholodilina TN, Sizova EA, Lebedev SV, Salnikova EV. Calcium: physiological role, sources and doses in diets of commercial poultry (review). Sel'skokhozyaistvennaya Biologiya [Agricultural Biology]. 2024;59(2):237-257. doi: 10.15389/agrobiology.2024.2.237eng
  10. Ivanishcheva AP, Sizova EA, Kamirova AM, Musabayeva LL, Solovyov MV. Macro- and microelements in animal nutrition: variety of substances and forms (review). Animal Husbandry and Fodder Production. 2023;106(2):85-111. https://doi.org/10.33284/2658-3135-106-2-85
  11. 1. Control methods. Chemical factors. Determination of chemical elements in biological environments and preparations by methods of atomic emission spectrometry with inductively coupled plasma and mass spectrometry with inductively coupled plasma: methodical instructions. MUK 4.1.1482-03. MUK 4.1.1483-03. Moscow: Federal Center for State Sanitary and Epidemiological Surveillance of the Ministry of Health of the Russian Federation; 2003:56 p.
  12. Egorov IA, Manukyan VA, Okolelova TM, Lenkova TN, Andrianova EN, Shevyakov AN, Egorova TV, Egorova TA, Bajkovskaya EYu, Gogina NN, Krivoruchko LI, Sysoeva IG, Men'shenin IA, Grigor'eva EN, Panin IG, Grechishnikov VV, Panin AI, Kustova SV, Afanas'ev VA, Ponomarenko YuA. Guidelines for Feeding Poultry: A Method Instructions. Ed.: Fisinin VI, Egorov IA. Federal Scientific Center “All-Russian Research and Technological Poultry Institute” of Russian Academy of Science. Moscow: Lika; 2018:226 p.
  13. Khmelnitskaya TA, Sappinen SV, Troshkova OA, Peven VG, Ivashkina LN, Ivashkin VA, Urykina VP, Okolelova TM, Dyadichkina LF,  Pozdnyakova NS,  Kavtarashvili ASh,  Borisov AV,  Irza VN, Borisov VV, Starov SK. Guide to Working with Agricultural Poultry of the Hisex Brown Cross. : Grachev AK. Kashino: Publisher: OJSC Breeding Poultry Plant "Sverdlovsky", 2007:82 p.
  14. Attia YA, Al-Harthi MA, Abo El-Maaty HM. Calcium and cholecalciferol levels in late-phase laying hens: effects on productive traits, egg quality, blood biochemistry, and immune responses. Frontiers in Veterinary Science. 2020;7:389. doi: 10.3389/fvets.2020.00389
  15. Chen CC, Lai CC, Huang HL, Huang WY, Toh HS, Weng TC, Chuang YC, Lu YC, Tang HJ. Antimicrobial activity of Lactobacillus species against carbapenem-resistant Enterobacteriaceae. Frontiers in Microbiology. 2019;10:789. doi: 10.3389/fmicb.2019.00789
  16. Cho SH, Cho  YJ,  Park JH.  The human symbiont Bacteroides thetaiotaomicron promotes diet-induced obesity by regulating host lipid metabolism. Journal of Microbiology. 2022;60(1):118-127. doi: 10.1007/s12275-022-1614-1
  17. Cui Y, Wang Q, Liu S, Sun R, Zhou Y, Li Y. Age-related variations in intestinal microflora of free-range and caged hens. Frontiers in Microbiology. 2017;8:1310. doi: 10.3389/fmicb.2017.01310
  18. Dittoe DK, Olson EG, Ricke SC. Impact of the gastrointestinal microbiome and fermentation metabolites on broiler performance. Poultry Science. 2022;101(5):101786. doi: 10.1016/j.psj.2022.101786
  19. Dong X, Hu B, Wan W, Gong Y, Feng Y. Effects of husbandry systems and Chinese indigenous chicken strain on cecum microbial diversity. Asian-Australasian Journal of Animal Sciences. 2019;33(10):1610-1616. doi: 10.5713/ajas.19.0157
  20. Gardiner GE, Metzler-Zebeli BU, Lawlor PG. Impact  of  intestinal  microbiota on  growth  and  feed  efficiency  in  pigs:  a  Microorganisms. 2020;8(12):1886. doi: 10.3390/microorganisms8121886
  21. Griffiths MW, Tellez AM. Lactobacillus helveticus: the proteolytic system. Frontiers in Microbiology. 2013;4:30. doi: 10.3389/fmicb.2013.00030
  22. Guo M, Zhang C, Zhang C, Zhang X, Wu Y. Lacticaseibacillus rhamnosus reduces the pathogenicity of Escherichia coli in chickens. Frontiers in Microbiology. 2021;12:664604. doi: 10.3389/fmicb.2021.664604
  23. Hamdi M, Solà-Oriol D, Davin R, Perez JF. Calcium sources and their interaction with the different levels of non-phytate phosphorus affect performance and bone mineralization in broiler chickens. Poultry Science. 2015;94(9):2136-2143. doi: 10.3382/ps/peu061
  24. Huang Y, Lv H, Song Y, Sun C, Zhang Z, Chen S. Community composition of cecal microbiota in commercial yellow broilers with high and low feed efficiencies. Poultry Science. 2021;100(4):100996. doi: 10.1016/j.psj.2021.01.019
  25. Humer E, Schwarz C, Schedle K. Phytate in pig and poultry nutrition. Journal of Animal Physiology and Animal Nutrition. 2015;99(4):605-625. doi: 10.1111/jpn.12258
  26. Kumar H, Park W, Lim D,  Srikanth K,  Kim  JM,  Jia XZ,  Han JL, Hanotte O, Park JE, Oyola SO. Whole  metagenome  sequencing of cecum microbiomes in Ethiopian indigenous chickens from  two  different  altitudes  reveals  antibiotic resistance genes. Genomics. 2020;112(2):1988-1999. doi: 10.1016/j.ygeno.2019.11.011
  27. Lawlor PG, Lynch PB, Caffrey PJ,  O’Reilly JJ,  O’Connell MK.  Measurements  of  the acid-binding  capacity  of  ingredients  used  in  pig    Irish Veterinary Journal. 2005;58(8):447-452. doi: 10.1186/2046-0481-58-8-447
  28. LeBlanc JG, Chain F, Martín R, Bermúdez-Humarán LG, Courau S, Langella P. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microbial cell factories. 2017;16:79. doi: 10.1186/s12934-017-0691-z
  29. Li H, Wang XK, Tang M, Lei L, Li JR, Sun H, Jiang J, Dong B, Li HY, Jiang JD, Peng ZG. Bacteroides thetaiotaomicron ameliorates  mouse hepatic steatosis through regulating gut microbial composition, gut-liver folate and unsaturated fatty acids metabolism. Gut Microbes. 2024;16(1):2304159. doi: 10.1080/19490976.2024.2304159
  30. Li W, Angel R, Kim S-W, Jiménez-Moreno E, Proszkowiec-Weglarz M, Plumstead PW. Impacts of age and calcium on Phytase efficacy in broiler chickens. Animal Feed Science and Technology. 2018;238:9-17. doi: 10.1016/j.anifeedsci.2018.01.021
  31. Liu J, Stewart SN, Robinson K, Yang Q, Lyu W, Whitmore MA, Zhang G. Linkage between the intestinal microbiota and residual feed intake in broiler chickens. Journal of Animal Science and Biotechnology. 2021;12:22. doi: 10.1186/s40104-020-00542-2
  32. Liu Y, Zhong X, Lin S, Xu H, Liang X, Wang Y, Xu J, Wang K, Guo X, Wang J, Yu M, Li C, Xie C. Limosilactobacillus reuteri and caffeoylquinic acid synergistically promote adipose browning and ameliorate obesity-associated disorders. Microbiome. 2022;10:226. doi: 10.1186/s40168-022-01430-9
  33. Lundberg R, Scharch C, Sandvang D. The link between broiler flock heterogeneity and cecal microbiome composition. Animal Microbiome. 2021;3:54. doi: 10.1186/s42523-021-00110-7
  34. Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S, Navarrete P, Balamurugan R. The firmicutes/bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients. 2020;12(5):1474. doi: 10.3390/nu12051474
  35. Rassmidatta K, Theapparat Y, Chanaksorn N, Carcano P, Adeyemi KD, Ruangpanit Y. Dietary Kluyveromyces marxianus hydrolysate alters humoral immunity, jejunal morphology, cecal microbiota and metabolic pathways in broiler chickens raised under a high stocking density. Poultry Science. 2024;103(9): 103970. doi: 10.1016/j.psj.2024.103970
  36. Roth C, Sims T, Rodehutscord M, Seifert J, Camarinha-Silva A. The active core microbiota of two high-yielding laying hen breeds fed with different levels of calcium and phosphorus. Frontiers in Physiology. 2022;13:951350. doi: 10.3389/fphys.2022.951350
  37. Shi S, Qi Z, Gu B, Cheng B, Tu J, Song X, Shao Y, Liu H, Qi K, Li S. Analysis of high-throughput sequencing for cecal microbiota diversity and function in hens under different rearing systems. 3 Biotech. 2019;9 438. doi: 10.1007/s13205-019-1970-7
  38. Teeter RG, Smith MO, Owens FN, Arp SC, Sangiah S, Breazile JE. Chronic heat stress and respiratory alkalosis: occurrence and treatment in broiler chicks. Poultry Science. 1985;64(6):1060-1064. doi: 10.3382/ps.0641060
  39. Tian Y, Li G, Zhang S, Zeng T, Chen L, Tao Z, Lu L. Dietary supplementation with fermented plant product modulates production performance, egg quality, intestinal mucosal barrier, and cecal microbiota in laying hens. Frontiers in Microbiology. 2022;13:955115. doi: 10.3389/fmicb.2022.955115
  40. Wang H, Ni X, Qing X,  Zeng D, Luo M, Liu L, Li G, Pan K, Jing B. Live probiotic Lactobacillus johnsonii BS15 promotes growth performance and lowers fat deposition by improving lipid metabolism, intestinal development, and gut microflora in broilers. Frontiers in Microbiology. 2017;8:1073. doi: 10.3389/fmicb.2017.01073
  41. Wang J, Wu S, Zhang Y, Yang J, Hu Z. Gut microbiota and calcium balance. Frontiers in Microbiology. 2022;13:1033933. doi: 10.3389/fmicb.2022.1033933
  42. Wang K, Yang A, Peng X, Lv F, Wang Y, Cui Y, Wang Y, Zhou J, Si H. Linkages of various calcium sources on immune performance, diarrhea rate, intestinal barrier, and post-gut microbial structure and function in piglets. Frontiers in Nutrition. 2022;9:921773. doi: 10.3389/fnut.2022.921773
  43. Wen C, Yan W, Mai C, Duan Z, Zheng J, Sun C, Yang N. Joint contributions of the gut microbiota and host genetics to feed efficiency in chickens. Microbiome. 2021;9:126. doi: 1186/s40168-021-01040-x
  44. Yadav S, Caliboso KD, Nanquil JE, Zhang J, Kae H, Neupane K, Mishra B, Jha R. Cecal microbiome profile of Hawaiian feral chickens and pasture-raised broiler (commercial) chickens determined using 16S rRNA amplicon sequencing. Poultry Science. 2021;100(7):101181. doi: 10.1016/j.psj.2021.101181
  45. Yang X, Tai Y, Ma Y, Xu Z, Hao J, Han D, Li J, Deng X. Cecum microbiome and metabolism characteristics of Silky Fowl and White Leghorn chicken in late laying stages. Frontiers in Microbiology. 2022;13:984654. doi: 10.3389/fmicb.2022.984654

Information about the authors:

Tatyana N Kholodilina, Cand. Sci. (Agriculture), Head of the Center «Testing Center» of the Central Common Use Center, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000; Associate Professor of the Department of «Ecology and Nature Management», Orenburg State University, 460018, Orenburg, Pobedy Ave., 13, tel.: 8-353-277-39-97.

Elena V Yausheva, Cand. Sci. (Biology), Senior Researcher, Acting Head of the Laboratory of Molecular Genetic Research and Metallomics in Animal Husbandry, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000; Senior Researcher at the Scientific and Educational Center «Biological Systems and Nanotechnologies», Orenburg State University, Pobedy Ave., 13, Orenburg, 460018, tel.: 8-987-850-07-15.

Elena A Sizova, Dr. Sci. (Biology), Head of the Department of Physiology, Biochemistry and Morphology of Animals, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000; Professor of the Scientific and Educational Center «Biological Systems and Nanotechnologies», Orenburg State University, Pobedy Ave., 13, Orenburg, 460018, tel.: 8-912-344-99-07.

Daniil E Shoshin, Postgraduate student, Junior Researcher at the Department of Physiology, Biochemistry and Morphology of Animals, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000; Assistant at the Scientific and Educational Center «Biological Systems and Nanotechnologies», Orenburg State University, Pobedy Ave., 13, Orenburg, 460018, tel.: 8-965-932-53-67.

Kristina V Ryazantseva, Cand. Sci. (Biology), Researcher at the Department of Physiology, Biochemistry and Morphology of Animals, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000; Researcher at the Scientific and Educational Center «Biological Systems and Nanotechnologies», Orenburg State University, Pobedy Ave., 13, Orenburg, 460018, tel.: 8-986-775-95-45.

Ksenia S Nechitailo, Cand. Sci. (Biology), Senior Researcher at the Department of Physiology, Biochemistry and Morphology of Animals, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000; senior lecturer at the Scientific and Educational Center «Biological Systems and Nanotechnologies», Orenburg State University, Pobedy Ave., 13, Orenburg, 460018, tel.: 8-905-893-55-99.

Tatyana A Klimova, Cand. Sci. (Biology), Head of the Microbiology Laboratory «Testing Center» of the Central Common Use Center, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000, tel.: 8-987-849-41-66.

Aleksandra S Mustafina, Cand. Sci (Agriculture), Junior Researcher «Testing Center» of the Central Common Use Center, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29 9 Yanvarya St., Orenburg, 460000, tel.: 8-912-340-21-10.

The article was submitted 02.07.2025; approved after reviewing 25.08.2025; accepted for publication 15.09.2025.

Download