Gladyr EA, Romanenkova OS, Vinogradova IV.

Animal Husbandry and Fodder Production. 2025. Vol. 108. No. 4. Р. 95-105.

doi:10.33284/2658-3135-108-4-95

Original article

Results of developing PCR test systems for detecting carriers of HH2, HH7, and HMW fertility

haplotypes in Holstein cattle

 

Elena A Gladyr1, Olga S Romanenkova2, Irina V Vinogradova3

1,2,3Federal Research Center for Animal Husbandry named after Academy Member LK Ernst, Dubrovitsy, Russia

1elenagladyr@mail.ru, https://orcid.org/0000-0002-5210-8932

2ksilosa@gmail.com, https://orcid.org/0000-0002-2682-6164

3sirnik07@mail.ru, https://orcid.org/0000-0001-7465-5534

 

Abstract. The spread of genetic abnormalities in the Holstein cattle population remains a pressing issue. The wide exchange of genetic material between countries is accompanied by the spread of diseases caused by rare mutations that arise in outstanding representatives of commercial breeds. Using molecular genetics methods, a large number of SNPs that cause reduced reproductive function in cattle through embryonic and postnatal mortality have been identified and mapped. This has made it possible to develop test systems for mass screening of animals and prevent the spread of dangerous genetic diseases. For the HH2, HH7, and HMW haplotypes of Holstein cattle, the precise localization of the corresponding mutations was achieved relatively recently. Therefore, it is necessary to conduct research on the distribution of these haplotypes in the Russian Holstein cattle population. At the Laboratory of Molecular Genetics of Farm Animals of the L.K. Ernst developed test systems based on the real-time PCR method for detecting latent carriers of the HH2, HH7, and HMW haplotypes, and studied a sample of 464 Holstein cattle (84 bulls and 380 cows). The frequencies of latent carriers of the HH2, HH7, and HMW haplotypes in the bull sample were 1.19%, 1.19%, and 7.14%, respectively. In the cow sample, the frequencies of HH2, HH7, and HMW carriers were 0.78%, 0.26%, and 1.05%, respectively. Screening of breeding stock for the presence of a harmful allele allows us to determine the genetic status of animals, exclude the mating of parental pairs with a heterozygous status for the IFT80, CENPU, and CACNA1S genes, promptly remove latent carriers from selection and breeding programs, or use them in breeding with direct monitoring of the genetic status of the offspring.

Keywords: cattle, Holstein breed, fertility haplotypes, HH2, HH7, muscle weakness, SNP, test system

Acknowledgments: the work was performed in accordance to the plan of research works for 2024-2026 LK Ernst Federal Research Center (No. FGGN-2024-0015).

For citation: Gladyr EA, Romanenkova OS, Vinogradova IV. Results of developing PCR test systems for detecting carriers of HH2, HH7, and HMW fertility haplotypes in Holstein cattle. Animal Husbandry and Fodder Production. 2025;108(4):95-105. (In Russ.). https://doi.org/10.33284/2658-3135-108-4-95

References

 

  1. Bagdat AB, Ziyabek DB, Muslimova ZhU, Usenbekov ES. Diagnostics of carriers of HH2 fertility haplotypes in Holstein cows (Conference proceedings) Scientific support of Siberian animal husbandry: proceedings of the VIII International Scientific and Practical Conference. (Krasnoyarsk, 16-17 May 2024). Krasnoyarsk: Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences; 2024:356-359.
  2. Zinovieva NA. Haplotypes   affecting   fertility   in   Holstein   cattle.   Sel’skokhozyaistvennaya  Biologiya   [Agricultural Biology].   2016;51(4):423-435.   doi:   15389/agrobiology.2016.4.423rus   doi: 10.15389/agrobiology.2016.4.423eng
  3. Stepanov AV, Bykova OA, Kostyunina OV, Zyryanova AA, Shevkunov OA. Identification of cattle fertility haplotypes. Agrarian Bulletin of the Urals. 2024;24(7):921-931. doi: 10.32417/1997-4868-2024-24-06-921-931
  4. Merkureva YeK, Shangin-Berezovskii GN. Genetics with the basics of biometrics: a textbook for Higher Education Institutions. Moscow: Kolos; 1983: 400 p.
  5. Mitrofanova OV, Solovieva LI, Kuzicheva YY. Allelic diversity according to microsatellite (STR) loci in the Holstein cows. Animal Husbandry and Fodder Production. 2025;108(3):126-135. https://doi.org/10.33284/2658-3135-108-3-126
  6. Мukiy JV, Kostyunina OV. Identification of LOF- mutations in a population of Ayrshire cattle. Animal Husbandry and Fodder Production. 2024;107(1):62-72. doi:33284/2658-3135-107-1-62
  7. Belokurova SS, Chinarov RYu, Lukanina VA, Singina GN. Development of ovarian follicles in Holstein heifers at different intervals between OPU sessions. Animal Husbandry and Fodder Production. 2025;108(2):19-29. https://doi.org/10.33284/2658-3135-108-2-19
  8. Kovalyuk NV, Satsuk VF, Yakusheva LI. Method for determining rs3423414874 polymorphism in CACNA1S gene associated with bovine muscle weakness syndrome: pat. RU 2840505 S1 Russian Federation. Application date of 04.07.2024; Publication date of 26.05.2025. Bull. № 15. 12 p.
  9. Kovalyuk NV, Volchenko AE, Shiryaeva EV, Yakusheva LI, Shakhnazarova YuYu. A test system for the identification of the HH2 fertility haplotype and its distribution in the Holstein subpopulation of the Krasnodar Territory. Collection of Scientific Papers of KRCAHVM. 2024;13(1):11-14. doi: 10.48612/sbornik-2024-1-3
  10. Adams HA, Sonstegard TS,  VanRaden PM,  Null DJ, Van Tassell CP, Larkin DM, Lewin HA. Identification of a nonsense mutation in APAF1 that is likely causal for a decrease in reproductive efficiency in Holstein dairy cattle. J Dairy Sci. 2016;99(8):6693-6701. doi: 10.3168/jds.2015-10517
  11. Al-Khudhair A, Null DJ, Cole JB, Wolfe CW, Steffen DJ, VanRaden PM. Inheritance of a mutation causing neuropathy with splayed forelimbs in Jersey cattle. J Dairy Sci. 2022;105(2):1338-1345. doi: 10.3168/jds.2021-20600
  12. Al-Khudhair А, VanRaden PM, Null DJ, Neupane M, McClure MC, Dechow CD. New mutation within a common haplotype is associated with calf muscle weakness in Holsteins. J Dairy Sci. 2024;107(6):3768-3779. doi: 10.3168/jds.2023-24121
  13. Ask-Gullstrand P, Strandberg E, Båge R, Rius-Vilarrasa E, Berglund B. The effect of genetic defects on pregnancy loss in Swedish dairy cattle. J Dairy Sci. 2024;107(5):2999-3005. doi: 10.3168/jds.2023-24159
  14. Charlier C, Agerholm JS, Coppieters W, Karlskov-Mortensen P, Li W, de Jong G, Fasquelle C, Karim L, Cirera S, Cambisano N, Ahariz N, Mullaart E, Georges M, Fredholm M. A deletion in the bovine FANCI gene compromises fertility by causing fetal death and brachyspina. PLoS One. 2012;7(8):e43085. doi: 10.1371/journal.pone.0043085
  15. Cole JB, VanRaden PM, Null DJ, Hutchison JL, Hubbard S. [Internet] Haplotype tests for economically important traits of dairy cattle. USDA AIP Research Report Genomics (12-20). 2022. Available from: https://www.usda.gov/ARSUserFiles/80420530/Publications/ARR/Haplotype% 20testsARR-Genomic5.pdf. (cited 08.09.2025).
  16. Cole JB. Null DJ, VanRaden PM. Phenotypic and genetic effects of recessive haplotypes on yield, longevity, and fertility. J Dairy Sci. 2016;99(9):7274-7288. doi: 10.3168/jds.2015-10777
  17. Dechow CD, Frye E, Maunsell FP. Identification of a putative haplotype associated with recumbency in Holstein calves. JDS Commun. 2022;3(6):412-415. doi: 10.3168/jdsc.2022-0224
  18. Gozdek M, Mucha S, Prostek A, Kamola D, Sadkowski T. Distribution of recessive genetic defect carriers in holstein friesian cattle: a polish perspective. Animals (Basel). 2024;14(22):3170. doi: 10.3390/ani14223170
  19. Gutierrez-Reinoso MA, Aponte PM, Garcia-Herreros M. Genomic analysis, progress and future perspectives in dairy cattle selection: a review. Animals (Basel). 2021;11(3):599. doi: 10.3390/ani11030599
  20. Hozé C, Escouflaire  C, Mesbah-Uddin M, Barbat A, Boussaha M, Deloche MC, Boichard D, Fritz S, Capitan A. Short communication: A splice site mutation in CENPU is associated with recessive embryonic lethality in Holstein cattle. J Dairy Sci. 2020;103(1):607-612. doi: 10.3168/jds.2019-17056
  21. Ortega MS, Bickhart DM, Lockhart KN, Null DJ, Hutchison JL, McClure JC, Cole JB. Truncation of IFT80 causes early embryonic loss in Holstein cattle associated with Holstein haplotype 2. J Dairy Sci. 2022;105(11):9001-9011. doi: 10.3168/jds.2022-21853
  22. Rosen BD, Bickhart DM,  Schnabel RD,  Koren S,  Elsik  CG,  Tseng  E, Rowan TN, Low WY, Zimin A, Couldrey C, Hall R, Li W, Rhie A, Ghurye J, McKay SD, Thibaud-Nissen F, Hoffman J, Murdoch BM, Snelling WM, McDaneld TG, Hammond JA, Schwartz JC, Nandolo W, Hagen DE, Dreischer C, Schultheiss SJ, Schroeder SG, Phillippy AM, Cole JB, Van Tassell CP, Liu G, Smith TPL, Medrano JF. De novo assembly of the cattle reference genome with single-molecule sequencing. Gigascience. 2020;9(3):giaa021. doi: 10.1093/gigascience/giaa021
  23. van den Berg I, Nguyen TV, Nguyen TTT, Pryce JE, Nieuwhof GJ, MacLeod IM. Imputation accuracy and carrier frequency of deleterious recessive defects in Australian dairy cattle. J Dairy Sci. 2024;107(11):9591-9601. doi: 10.3168/jds.2024-24780
  24. Yang Y, Si J, Lv X, Dai D, Liu L, Tang S, Wang Y, Zhang S, Xiao W, Zhang Y. Integrated analysis of whole genome and transcriptome sequencing reveals a frameshift mutation associated with recessive embryonic lethality in Holstein cattle. Anim Genet. 2022;53(1):137-141. doi: 10.1111/age.13160

Information about the authors:

Elena A Gladyr, Cand. Sci. (Biology), Leading Researcher, Federal Research Center for Animal Husbandry named after Academy Member LK Ernst, 60 Dubrovitsy village, Podolsk City district, Moscow region, 142132, phone:+7(4967)65-11-04.

Olga S Romanenkova, Cand. Sci. (Biology), Researcher, Federal Research Center for Animal Husbandry named after Academy Member LK Ernst, 60 Dubrovitsy village, Podolsk City district, Moscow region, 142132, phone: +7(4967)65-11-04.

Irina V Vinogradova, Cand. Sci. (Biology), Senior Researcher, Federal Research Center for Animal Husbandry named after Academy Member LK Ernst, 60 Dubrovitsy village, Podolsk City district, Moscow region, 142132, phone: +7(4967)65-11-04.

The article was submitted 17.10.2025; approved after reviewing 02.12.2025; accepted for publication 15.12.2025.

Download