Baranova ОV, Kiyaeva ЕV, Notova. SV.
Animal Husbandry and Fodder Production. 2025. Vol. 108. No. 4. Р. 217-233.
doi:10.33284/2658-3135-108-4-217
Review article
Different forms of iron in feeding of animals
Oksana V Baranova1, Elena V Kiyaeva2, Svetlana V Notova3
1,2,3 Orenburg State University, Orenburg, Russia
1baranovaov@yandex.ru, https://orcid.org/0000-0002-2780-6499
2elena_sap@mail.ru, https://orcid.org/0000-0002-6476-7839
3snotova@mail.ru, https://orcid.org/0000-0002-6378-4522
Abstract. Iron is an essential micronutrient, and iron-containing proteins perform many vital functions in the physiological and biochemical processes of the body. Iron deficiency is known to be one of the most common nutrient deficiencies in the world, and rapidly growing animals are most vulnerable to iron deficiency. Therefore, iron is often added to animal diets as supplements to ensure growth and productivity. Inorganic ferrous sulfate is most often included in animal diets. However, due to many disadvantages of inorganic iron supplements (low bioavailability, hygroscopicity and interaction with other elements, as well as high excretion), more and more attention is currently paid to the development and use of new iron sources, such as organic forms or nanoforms, which ensure high bioavailability of the element, its lower toxicity and reduce of dosage when added to feed. This topic is relevant to science and a sufficient number of studies on this topic can be found in scientific journals. This review presents the analysis on the use of iron in its various forms in animal feeding, shows the prospects for its use in feed.
Keywords: feeding, iron, mineral forms of iron, organic forms of iron, nanoparticles
Acknowledgments: study was carried out in accordance with the program of the Ministry of Science and Higher Education of the Russian Federation for the implementation of major scientific projects in priority areas of scientific and technical development of the Federal State Budgetary Educational Institution of Higher Education of Orenburg State University (No. 075-15-2024-550).
For citation: Baranova ОV, Kiyaeva ЕV, Notova. SV. Different forms of iron in feeding of animals (review). Animal Husbandry and Fodder Production. 2025;108(4):217-233. (In Russ.). https://doi.org/10.33284/2658-3135-108-4-217
References
- Sheida EV, Lebedev SV, Miroshnikov SA, Grechkina VV, Shoshina OV. Adaptive responses of cattle digestive system as influenced by dietary ultrafine iron particles combined with fat diets. Agricultural Biology. 2022;57(2):328-342. doi: 10.15389/agrobiology.2022.2.328eng
- Kilyakova YV, Miroshnikova EP, Arinzhanov AE, Mingazova MS. Effect of FE-C nanocomposite on growth and morphological blood parameters of broiler chickens. International Journal of Veterinary Medicine. 2024;4:231-238. doi: 10.52419/issn2072-2419.2024.4.231
- Кvan OV. Endogenous losses of substances: optimization of micronutrient supply of farm animal diets (review). Animal Husbandry and Fodder Production. 2023;106(4):148-163. https://doi.org/10.33284/2658-3135-106-4-148
- Lebedev SV, Sheyda EV, Shoshina OV, Korneychenko VI. Comparative analysis of the effect of various forms of iron on the course of metabolic processes in rumen using "in vitro" method. Animal Husbandry and Fodder Production. 2023;106(1):192-202. https://doi.org/10.33284/2658-3135-106-1-192
- Shoshina OV, Lebedev SV, Sheyda EV. The role of iron in digestion in polygastric animals (review). Animal Husbandry and Fodder Production. 2021;104(4):170-181. https://doi.org/10.33284/2658-3135-104-4-170
- AlMatar M, Makky EA, Var I, Koksal F. The role of nanoparticles in the inhibition of multidrug-resistant bacteria and biofilms. Current drug delivery. 2018;15(4):470-484. doi: 10.2174/1567201815666171207163504
- Almeldin YA, Eldlebshany AE, Elkhalek EA, Lohakare J, Abdel-Wareth AA. Assessment of dietary supplementation of green iron oxide nanoparticles: impact on growth performance, ammonia emissions, carcass criteria, tissue iron content, and meat quality in broiler chickens under hot climate conditions. Frontiers in Veterinary Science. 2024;11:1393335. doi: 10.3389/fvets.2024.1393335
- Baabu PRS, Kumar HK, Gumpu MB, Babu K J, Kulandaisamy AJ, Rayappan JBB. Iron oxide nanoparticles: a review on the province of its compounds, properties and biological applications. Materials. 2023:16(1):59. doi: 10.3390/ma16010059
- Balakirev NA, Maksimov VI, Deltsov AA. Development and application of iron supplements, and principles of iron deficiency anemia therapy in fur farming. IOP Conference Series: Earth and Environmental Science. 2021;848(1):012215. doi: 1088/1755-1315/848/1/012215
- Byrne L, Hynes MJ, Connolly CD, Murphy RA. Influence of the chelation process on the stability of organic trace mineral supplements used in animal nutrition. Animals. 2021;11(6):1730. doi: 10.3390/ani11061730
- Byrne L, Murphy RA. Relative bioavailability of trace minerals in production animal nutrition: a review. Animals. 2022;12(15):1981. doi: 10.3390/ani12151981
- Cao J, Zhu J, Zhou Q, Zhao L, Zou C, Guo Y, Curtin B, Ji F, Liu B, Yu D. Efficacy evaluation of novel organic iron complexes in laying hens: effects on laying performance, egg quality, egg iron content, and blood biochemical parameters. Animal Bioscience. 2023;36(3):498-505. doi: 10.5713/ab.22.0086
- Chamorro S, Gutiérrez L, Vaquero MP, Verdoy D, Salas G, Luengo Y, Teran FJ. Safety assessment of chronic oral exposure to iron oxide nanoparticles. Nanotechnology. 2015;26(20): doi: 10.1088/0957-4484/26/20/205101
- Conrad ME, Umbreit JN. Pathways of iron absorption. Blood Cells, Molecules, and Diseases. 2002;29(3):336-355. doi: 1006/bcmd.2002.0564
- Dumlu B. Importance of nano-sized feed additives in animal nutrition. Journal of Agricultural Production. 2024;5(1):55-72. doi: 10.56430/japro.1433614
- Dutt S, Hamza I, Bartnikas TB. Molecular mechanisms of iron and heme metabolism. Annual Review of Nutrition. 2022;42(1):311-335. doi: 10.1146/annurev-nutr-062320-112625
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Safety and efficacy of iron compounds (E1) as feed additives for all animal species: ferrous carbonate; ferric chloride, hexahydrate; ferrous fumarate; ferrous sulphate, heptahydrate; ferrous sulphate, monohydrate; ferrous chelate of amino acids, hydrate; ferrous chelate of glycine, hydrate, based on a dossier submitted by FEFANA asbl. EFSA Journal. 2016;14(2): doi: 10.2903/j.efsa.2016.4396
- Ehret WJ, Sandrock KC, Boyazoglu PA. Causes of variation of copper, iron, manganese, zinc and magnesium levels in bovine livers. The effects of locality. Journal of the South African Veterinary Association. 1975;46(3):249-255.
- El-Shenawy AM, Gad DM, Yassin SA. Effect of iron nanoparticles on the development of fish farm feeds. Alexandria Journal of Veterinary Sciences. 2019;60(1):102-115. doi: 10.5455/ajvs.281234
- Gayathri SL, Panda N. Chelated minerals and its effect on animal production: A review. Agricultural Reviews. 2018;39(4):314-320.
- Gudkov SV, Burmistrov DE, Serov DA, Rebezov MB, Semenova AA, Lisitsyn AB. Do iron oxide nanoparticles have significant antibacterial properties? Antibiotics. 2021;10(7):884. doi: 10.3390/antibiotics10070884
- Han M, Fu X, Xin X, Dong Y, Miao Z, Li J. High dietary organic iron supplementation decreases growth performance and induces oxidative stress in broilers. Animals. 2022;12(13):1604. doi: 10.3390/ani12131604
- Hansen SL, Ashwell MS, Moeser AJ, Fry RS, Knutson MD, Spears JW. High dietary iron reduces transporters involved in iron and manganese metabolism and increases intestinal permeability in calves. Journal of Dairy Science. 2010;93(2):656-665. doi:10.3168/jds.2009-2341
- Hassan S, Hassan F, Rehman MS. Nano-particles of trace minerals in poultry nutrition: potential applications and future prospects. Biological Trace Element Research. 2020;195:591-612. doi: 10.1007/s12011-019-01862-9
- Huang J, Jones A, Waite TD, Chen Y, Huang X, Rosso KM, Kappler A, Mansor М, Tratnyek PG, Zhang H. Fe (II) redox chemistry in the environment. Chemical Reviews. 2021;121(13):8161-8233. doi: 1021/acs.chemrev.0c01286
- Jarosz Ł, Marek A, Grądzki Z, Kwiecień M. Effects of dietary supplementation of iron as sulphates or glycine chelates on the productive performance and concentrations of acute-phase proteins and iron in the serum and liver tissues of broiler chickens. Annals of Animal Science. 2021;21(1):267-290. doi: 10.2478/aoas-2020-0069
- Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. Journal of Nanobiotechnology. 2022;20(1):262. doi: 10.1186/s12951-022-01477-8
- Konashi S, Takahashi K, Akiba Y. Effects of dietary essential amino acid deficiencies on immunological variables in broiler chickens. British Journal of Nutrition. 2000;83(4):449-456.
- Lipiński P, Starzyński RR, Canonne-Hergaux F, Tudek B, Oliński R, Kowalczyk P, Zabielski R. Benefits and risks of iron supplementation in anemic neonatal pigs. The American Journal of Pathology. 2010;177(3):1233-1243. doi: 10.2353/ajpath.2010.091020
- Maes D, Steyaert M, Vanderhaeghe C, López Rodríguez A, de Jong E, del Pozo Sacristán R, Vangroenweghe F, Dewulf J. Comparison of oral versus parenteral iron supplementation on the health and productivity of piglets. Veterinary Record. 2011;168(7):188. doi: 10.1136/vr.c7033
- Maji C, Biswas S, Kaur J. Nutritional deficiency diseases in goats. In: Tanmoy Rana, editor. Principles of Goat Disease and Prevention. 2023;17:221-236. doi: 10.1002/9781119896142.ch17
- Mazgaj R, Lipiński P, Szudzik M, Jończy A, Kopeć Z, Stankiewicz AM, Kamyczek M, Swinkels D, Żelazowska B, Starzyński RR. Comparative evaluation of sucrosomial iron and iron oxide nanoparticles as oral supplements in iron deficiency anemia in piglets. International Journal of Molecular Sciences. 2021;22(18):9930. doi: 10.3390/ijms22189930
- Mazgaj R, Szudzik M, Lipiński P, Jończy A, Smuda E, Kamyczek M, Cieślak B, Swinkels D, Lenartowicz M, Starzyński RR. Effect of oral supplementation of healthy pregnant sows with sucrosomial ferric pyrophosphate on maternal iron status and hepatic iron stores in newborn piglets. Animals. 2020;10(7):1113. doi: 3390/ani10071113
- McMillen S, Lönnerdal B. Postnatal iron supplementation with ferrous sulfate vs. ferrous bis-glycinate chelate: Effects on iron metabolism, growth, and central nervous system development in sprague dawley rat pups. Nutrients. 2021;13(5): doi: 10.3390/nu13051406
- Michalak I, Dziergowska K, Alagawany M, Farag MR, El-Shall NA, Tuli HS, Dhama K. The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry. Veterinary Quarterly. 2022;42(1):68-94. doi: 10.1080/01652176.2022.2073399
- Mion B, Van Winters B, King K, Spricigo JFW, Ogilvie L, Guan L, DeVries TJ, McBride BW, LeBlanc SJ, Steele MA, Ribeiro ES. Effects of replacing inorganic salts of trace minerals with organic trace minerals in pre-and postpartum diets on feeding behavior, rumen fermentation, and performance of dairy cows. Journal of Dairy Science. 2022;105(8):6693-6709. doi: 3168/jds.2022-21908
- Mishra A, Pradhan D, Halder J, Biswasroy P, Rai VK, Dubey D, Rath G. Metal nanoparticles against multi-drug-resistance bacteria. Journal of Inorganic Biochemistry. 2022;237:111938. doi: 1016/j.jinorgbio.2022.111938
- Montiel Schneider MG, Martín MJ, Otarola J, Vakarelska E, Simeonov V, Lassalle V, Nedyalkova M. Biomedical applications of iron oxide nanoparticles: Current insights progress and perspectives. Pharmaceutics. 2022;14(1):204. doi: 10.3390/pharmaceutics14010204
- Nikonov IN, Folmanis YuG, Folmanis GE, Kovalenko LV, Laptev Gyu, Egorov IA, Fisinin VI, Tananaev IG. NIron nanoparticles as a food additive for poultry. Doklady Biological Sciences. 2011:440(1):328-331. doi: 10.1134/S0012496611050188
- Olowoyeye JC. Requirement, dietary sources, and efficiency of absorption of major minerals by farm animals: From an educational perspective. Indonesian Journal of Teaching in Science. 2022;2(1):93-98.
- Parisi F, Berti C, Mandò, C, Martinelli A, Mazzali C, Cetin I. Effects of different regimens of iron prophylaxis on maternal iron status and pregnancy outcome: A randomized control trial. The Journal of Maternal-Fetal & Neonatal Medicine. 2017;30(15):1787-1792. doi: 10.1080/14767058.2016.1224841
- Phipps O, Brookes MJ, Al-Hassi HO. Iron deficiency, immunology, and colorectal cancer. Nutrition Reviews. 2021;79(1):88-97. doi: 10.1093/nutrit/nuaa040
- Piskin E, Cianciosi D, Gulec S, Tomas M, Capanoglu E. Iron absorption: factors, limitations, and improvement methods. ACS omega. 2022;7(24):20441-20456. doi: 10.1021/acsomega.2c01833
- Radwinska J, Zarczynska K. Effects of mineral deficiency on the health of young ruminants. Journal of Elementology. 2014;19(3):915-928. doi:5601/jelem.2014.19.2.620
- Saqib S, Munis MFH, Zaman W, Ullah F, Shah SN, Ayaz A, Bahadur S. Synthesis, characterization and use of iron oxide nano particles for antibacterial activity. Microscopy Research and Technique. 2019;82(4):415-420. doi: 10.1002/jemt.23182
- Sarlak S, Tabeidian SA, Toghyani M, Shahraki ADF, Goli M, Habibian M. Effects of replacing inorganic with organic iron on performance, egg quality, serum and egg yolk lipids, antioxidant status, and iron accumulation in eggs of laying hens. Biological Trace Element Research. 2021;199(5):1986-1999. doi: 10.1007/s12011-020-02284-8
- Sil R, Chakraborti AS. Major heme proteins hemoglobin and myoglobin with respect to their roles in oxidative stress–a brief Frontiers in Chemistry. 2025;13:1543455. doi: 10.3389/fchem.2025.1543455
- Singh K, Chopra DS, Singh D, Singh N. Nano-formulations in treatment of iron deficiency anaemia: an overview. Clinical Nutrition ESPEN. 2022;52:12-19. doi: 10.1016/j.clnesp.2022.08.032
- Srole DN, Ganz T. Erythroferrone structure, function, and physiology: Iron homeostasis and beyond. Journal of Cellular Physiology. 2021;236(7): 4888-4901. doi: 10.1002/jcp.30247
- Svoboda M, Píšťková K. Oral iron administration in suckling piglets–a review. Acta Veterinaria Brno. 2018;87(1):77-83. doi: 10.2754/avb201887010077
- Taschetto D, Vieira SL, Angel CR, Stefanello C, Kindlein L, Ebbing MA, Simões CT. Iron requirements of broiler breeder hens. Poultry Science. 2017;96(11):3920-3927. doi: 3382/ps/pex208
- Umair M, Javed I, Rehman M, Madni A, Javeed A, Ghafoor A, Ashraf M. Nanotoxicity of inert materials: the case of gold, silver and iron. Journal of Pharmacy & Pharmaceutical Sciences. 2016;19(2):161-180. doi:10.18433/J31021
- Vogt A, Arsiwala T, Mohsen M, Vogel M, Manolova V, Bachmann On iron metabolism and its regulation. International Journal of Molecular Sciences. 2021;22(9):4591. doi: 10.3390/ijms22094591
- Yausheva EV. Increasing efficiency in the poultry meat production when using iron and copper nanoparticles in nutrition. IOP Conference Series: Earth and Environmental Science. 2021;624(1): doi: 10.1088/1755-1315/624/1/012046
- Yusuf A, Almotairy ARZ, Henidi H, Alshehri OY, Aldughaim MS. Nanoparticles as drug delivery systems: a review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers. 2023;15(7):1596. doi: 3390/polym15071596
- Zafar MH, Fatima M. Efficiency comparison of organic and inorganic minerals in poultry nutrition: a review. PSM Veterinary Research. 2018;3(2):53-59.
- Zakariya NA, Majeed S, Jusof WHW. Investigation of antioxidant and antibacterial activity of iron oxide nanoparticles (IONPS) synthesized from the aqueous extract of Penicillium Sensors International. 2022;3:100164. doi: 10.1016/j.sintl.2022.100164
- Zeng Q, Liu Y, Sun J, Jin Y. Providing new insights on the molecular properties and thermal stability of ovotransferrin and lactoferrin. Foods. 2023;12(3):532. doi: 10.3390/foods12030532
Information about the authors:
Oksana V Baranova, Cand. Sci. (Biology), Associate Professor, Director of Institute of Bioelementology, Orenburg State University, 13 Pobedy Ave, Orenburg, 460018, tel.: 8-950-189-89-01.
Elena V Kiyaeva, Cand. Sci. (Medicine), Senior Researcher, Institute of Bioelementology, Orenburg State University, 13 Pobedy Ave, Orenburg, 460018, tel.: 8-903-362-61-82.
Svetlana V Notova, Dr. Sci. (Medicine), Professor of the Department of Biochemistry and Microbiology, Orenburg State University, 13 Pobedy Ave, Orenburg, 460018, tel.: 8-903-367-03-70.
The article was submitted 15.05.2025; approved after reviewing 19.06.2025; accepted for publication 15.12.2025.
Download