Ryazanov VA, Kolpakov VI, Kayumov FG.

Animal Husbandry and Fodder Production. 2025. Vol. 108. No. 4. Р. 274-291.

doi:10.33284/2658-3135-108-4-274

Original article

Study of biological activity, ecological characteristics and trace element composition of Chlorella vulgaris algae in vitro

 

Vitaly A Ryazanov1, Vladimir I Kolpakov2, Foat G Kayumov3

1,2,3Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy

of Sciences, Orenburg, Russia

1vita7456@yandex.ru, https://orcid.org/0000-0003-0903-9561

2 vkolpakov056@yandex.ru, https://orcid.org/0000-0001-9658-7034

3nazkalms@mail.ru, https://orcid.org/0000-0001-9241-9228

Abstract. This article presents a comprehensive study of Chlorella vulgaris algae biomass samples, which differ at the cellular level in their protein, lipid, and carbohydrate content. Their trace element composition, biological activity, and environmental characteristics were analyzed in vitro. The effects of Chlorella vulgaris were assessed on the luminescent bacterial strain Escherichia coli K12 TG1 and on a population of protozoa sourced from the rumen of ruminants. Chlorella vulgaris was shown to stimulate bioluminescence in the model bacterial strain, but this resulted in a decrease in the total number of ciliates within the rumen fluid samples. In vitro studies simulating rumen digestion revealed an increase in the concentration of protein nitrogen while reducing the ammonia fraction. Additionally, an optimal ratio of acetic and propionic acids (3:1) was demonstrated in the rumen fluid samples. Moreover, the Chlorella biomass was notable for its high content of phosphorus, potassium, magnesium, and iron.

Keywords: green microalgae of Chlorella vulgaris, nitrogen, volatile fatty acids, carbon footprint, methane, protozoa

Acknowledgments: the work was performed in accordance with the 2024-2026 research plan of FSBRI FRC BST RAS (No. FNWZ-2024-0003).

For citation: Ryazanov VA, Kolpakov VI, Kayumov FG. Study of biological activity, ecological characteristics and trace element composition of Chlorella vulgaris algae in vitro. Animal Husbandry and Fodder Production. 2025;108(4):274-291. (In Russ.). https://doi.org/10.33284/2658-3135-108-4-274

References

 

  1. Atlanderova KN, Vlasenko LV, Duskaev GK. Assessment of the biovit and cinnamaldehyde effect on the degree of feed digestability and the cattle rumen microbiome. Proceedings of the Kuban State Agrarian University. 2024;3(112):201-207. (In Russ.)]. doi: 10.21515/1999-1703-112-201-207
  2. Kamirova AM, Sizova EA, Ivanishcheva AP. The use of plant substances for correction of the elemental status and ruminal digestion of farm animals. Perm Agrarian Journal. 2025;1(49):124-131. (In Russ.)]. doi: 10.47737/2307-2873-2025-49-124
  3. Acurio LP, Salazar DM,  Valencia AF, Robalino DR, Barona AC, Alvarez FC,  Rodriguez CA. Antimicrobial potential of Chlorella algae isolated from stacked waters of the Andean Region of Ecuador. IOP Conference Series: Earth and Environmental Science. 2018;151:012040. https://doi.org/10.1088/1755-1315/151/1/012040
  4. Agarwalla A, Komandur J,  Mohanty    Current  trends  in  the  pretreatment  of  microalgal  biomass for efficient and enhanced bioenergy production. Bioresour Technol. 2023;369:128330. doi: 10.1016/j.biortech.2022.128330
  5. Ahmadi A, Shahidi SA, Safari R, Motamedzadegan A, Ghorbani-HasanSaraei A. Evaluation of stability and antibacterial properties of extracted chlorophyll from alfalfa (Medicago sativa L.). Food and Chemical Toxicology. 2022;163: https://doi.org/10.1016/j.fct.2022.112980
  6. Alagawany M, Taha AE, AN, Noreldin A, El-Tarabily KhA, El-Hack MEA. Nutritional applications of species of Spirulina and Chlorella in farmed fish: A review. Aquaculture. 2021;542:736841. https://doi.org/10.1016/j.aquaculture.2021.736841
  7. An B-K, Kim K-E, Jeon J-Y, Lee KW. Effect of dried Chlorella vulgaris and Chlorella growth factor on growth performance, meat qualities and humoral immune responses in broiler chickens. SpringerPlus. 2016;5:718. doi: 10.1186/s40064-016-2373-4
  8. Andrade LM, Andrade CJ, Dias M, Nascimento CAO, Mendes MA. Chlorella and spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements; an overview. MOJ Food Process Technol. 2018;6(1):45- doi: 10.15406/mojfpt.2018.06.00144
  9. Bazarnova J, Smyatskaya Y, Shlykova A, Balabaev A, Đurović S. Obtaining fat-soluble pigments—Carotenoids from the biomass of Chlorella microalgae. Applied Sciences. 2022;12(7):3246. https://doi.org/10.3390/app12073246
  10. Chia MA, Lombardi AT, Melao MDGG. Growth and biochemical composition of Chlorella vulgaris in different growth media. Anais da Academia Brasileira de Ciências. 2013;85(04):1427-1438. https://doi.org/10.1590/0001-3765201393312
  11. Dias ALG, Freitas JA, Micai B, Azevedo RA, Greco LF, Santos JEP. Effect of supplemental yeast culture and dietary starch content on rumen fermentation and digestion in dairy cows. J Dairy Sci. 2018;101(1):201-221. doi: 3168/jds.2017-13241
  12. D'Souza GM, Dias Batista LF, Norris AB, Tedeschi LO. Effect of live yeast supplementation on energy partitioning and ruminal fermentation characteristics of steers fed a grower-type diet in heat-stress conditions. J Anim Sci. 2022;100(11):skac320. doi: 10.1093/jas/skac320
  13. Gadzama IU, Ray S, Méité R, Mugweru IM, Gondo T, Rahman MA, Redoy MRA, Rohani MF, Kholif AE, Salahuddin M, Brito AF. Chlorella vulgarisas a livestock supplement and animal feed: a comprehensive review. Animals.2025;15(6): https://doi.org/10.3390/ani15060879
  14. Keum GB, Pandey S,  Kim  ES,  Doo  H,  Kwak  J,  Ryu  S,  Choi  Y, Kang J, Kim S, Kim HB. Understanding the diversity and roles of the ruminal microbiome. J Microbiol. 2024;62(3):217-230. doi: 10.1007/s12275-024-00121-4
  15. Kholif AE, Gouda GA, Abu EAA, Patra AK. Replacing the concentrate feed mixture with moringa oleiferaleaves silage and Chlorella vulgaris microalgae mixture in diets of damascus goats: lactation performance, nutrient utilization, and ruminal fermentation. Animals. 2022; 12(12): https://doi.org/10.3390/ani12121589
  16. Liang Z, Liu Y, Ge F, Xu Y, Tao N, Peng F, Wong M. Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis. Chemosphere. 2013;92(10): 1383-1389. https://doi.org/10.1016/j.chemosphere.2013.05.014
  17. Lobo RR, Almeida E, Monteiro A, et al. Replacing soybean meal with microalgae biomass in diets with contrasting carbohydrate profiles can reduce in vitro methane production and improve short-chain fatty acid production. J Dairy Sci. 2024;107(8):5542-5555. doi: 10.3168/jds.2023-24025
  18. Martins CF, Trevisi P,  Coelho  DF,  Correa F, Ribeiro DM, Alfaia CM, Pinho M, Pestana JM, Mourato MP, Almeida AM, Fontes CMGA, Freire JPB, Prates JA.  Influence of Chlorella vulgaris on growth, digestibility and gut morphology and microbiota of weaned piglet. Scientific Reports. 2022;12(1): doi: 10.1038/s41598-022-10059-5
  19. Martins LF, Cueva SF, Lage CFA, Ramin M, Silvestre T, Tricarico J, Hristov AN. A meta-analysis of methane-mitigation potential of feed additives evaluated in vitro. Journal of Dairy Science. 2024;107(1):288- https://doi.org/10.1016/S0022-0302(23)00819-6
  20. Mendes AR, Spínola MP, Lordelo M, Prates JAM. Impact of Chlorella vulgarisintake levels on performance parameters and blood health markers in broiler chickens. Vet Sci. 2024;11(7):290. doi: 10.3390/vetsci11070290
  21. Metsoviti MN, Papapolymerou G, Karapanagiotidis IT, Katsoulas N. Effect of light intensity and quality on growth rate and composition of Chlorella vulgaris. Plants. 2019; 9(1):31. https://doi.org/10.3390/plants9010031
  22. Omarkozhauly N, Shaikenova K, Ismailova A, Satieva K, Kamenov M. Effect of zeolite-chlorella top dressing on scar metabolism and conversion of dairy cows' feed. Braz J Biol. 2023;83:e274763. doi: 1590/1519-6984.274763
  23. Palangi V, Kaya A, Macit M, Nadaroglu H, Ünlü HB, Kaya A, Fekri A, Mammadov A, Lackner M. Comparative anti-methanogenic ability of green algae ( reinhardtii) with/without nanoparticles: in vitrogas and methane production. Frontiers in Veterinary Science. 2025;12:1492230. https://doi.org/10.3389/fvets.2025.1492230
  24. Pelikan C, Wasmund K, Glombitza C, Hausmann B, Herbold CW, Flieder M, Loy A. Anaerobic bacterial degradation of protein and lipid macromolecules in subarctic marine sediment. ISME Journal. 2021;15(3):833-847. https://doi.org/10.1038/s41396-020-00817-6
  25. Qu L, Wang R, Zhao P, Chen R, Zhou W, Tang L, Tang X. Interaction between Chlorella vulgaris and bacteria: interference and resource competition. Acta Oceanologica Sinica. 2014;33(1):135-140. https://doi.org/10.1007/s13131-014-0432-7
  26. Safi C, Zebib B, Merah O, Pontalier PY, Vaca-Garcia C. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and sustainable energy reviews. 2014;35:265-278. https://doi.org/10.1016/j.rser.2014.04.007
  27. Sirohi P, Verma H, Singh SK, Singh VK, Pandey J, Khusharia S, Kumar D, Kaushalendra TP, Kumar A. Microalgal carotenoids: therapeutic application and latest approaches to enhance the production. Current Issues in Molecular Biology. 2022;44(12):6257-6279. https://doi.org/10.3390/cimb44120427
  28. Spínola MP, Costa MM,  Prates    Enhancing  digestibility  of Chlorella  vulgaris biomass    in    monogastric    diets:    strategies   and   insights.   Animals   (Basel).   2023;13(6):1017. doi: 10.3390/ani13061017
  29. Tsiplakou E, Abdullah MA, Skliros D, Chatzikonstantinou M, Flemetakis E, Labrou N, Zervas G. The effect of dietary Chlorella vulgaris supplementation on micro-organism community, enzyme activities and fatty acid profile in the rumen liquid of goats. Journal of Animal Physiology and Animal Nutrition. 2017;101(2): 275-283. https://doi.org/10.1111/jpn.12521
  30. Wallace RJ, Snelling TJ, McCartney CA, Tapio I, Strozzi F. Application of meta-omics techniques to understand greenhouse gas emissions originating from ruminal metabolism. Genet Sel Evol. 2017; 49(1): https://doi.org/10.1186/s12711-017-0285-6

 

Information about the authors:

Vitaly A Ryazanov, Cand. Sci. (Agriculture), Senior Researcher of the Laboratory of Precision Technologies in Agriculture, Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 Yanvarya St., Orenburg, 460000, Russian Federation, tel.: 8-922-807-71-00.

Vladimir I Kolpakov, Cand. Sci. (Agriculture), Senior Researcher of the Laboratory of Precision Technologies in Agriculture, Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 Yanvarya St., Orenburg, 460000, Russian Federation, tel.: 8-987-341-77-02.

Foat G Kayumov, Dr. Sci. (Agriculture), Professor, Chief Researcher of the Breeding and Genetic Center for Beef Cattle, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 Yanvarya St., Orenburg, 460000, Russian Federation, tel.: 8(3532)30-81-76, tel.: 8-987-341-75-80.

The article was submitted 13.10.2025; approved after reviewing 08.11.2025; accepted for publication 15.12.2025.

Download