Tatiana N Kholodilina, Irina V Shavrina, Maxim V Solovyov

Animal Husbandry and Fodder Production. 2023. Vol. 106, no 3. Р. 148-169.

 

doi:10.33284/2658-3135-106-3-148

 

Review article

Alimentary prevention of immunosuppression in poultry farming (review)

 

Tatiana N Kholodilina1,4, Irina V Shavrina2, Maxim V Solovyov3

1,3,4Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia

2Orenburg State University, Orenburg, Russia

1,4xolodilina@rambler.ru, https://orcid.org/0000-0002-3946-8247

2ira.shavrina.00@bk.ru, https://orcid.org/0000-0003-1477-4480

3fncbst@mail.ru

 

Abstract. One of main tasks in the poultry industry is the search for new methods of combating infectious diseases. For a long time, the use of antibacterial growth stimulants (AGP) has been a preventive strategy to solve current problems in poultry farms. However, the emergence of antibiotic-resistant bacteria has led to the need for complete or partial rejection of such drugs. The exclusion of the main factors leading to the immunosuppression of birds in production conditions, the improvement of technological discipline, as well as the development of alternative AGP drugs and the compilation of effective schemes for their use in poultry farming will reduce the use of antibiotics in Russia and combat microbial antibiotic resistance.

Keywords: poultry farming, immune system, antibiotics, prebiotics, probiotics, phytobiotics

Acknowledgments: the work was supported by the Russian Science Foundation, Рroject     No. 22-16-00070.

For citation: Kholodilina TN, Shavrina IV, Solovyov MV. Alimentary prevention of immunosuppression in poultry farming (review). Animal Husbandry and Fodder Production. 2023;106(3):148-169. (In Russ.). https://doi.org/10.33284/2658-3135-106-3-148

 

References

 
  1. Agricultural enzyme. The use of enzymes in poultry farming [Internet]. Available from: url: https://agroferment.ru/primenenie-fermentov-v-pticzevodstve.html (date of access: 18.06.2023).
  2. Djavadov ED et al. Antibiotics in poultry production: alternatives for prevention and treatment of avian diseases. Poultry Farming. 2017;11:41-46.
  3. Astrakhantsev AA, Lekontseva NA, Naumova VV. Egg productivity of laying hens of various crosses.Vestnik of Ulyanovsk State Agricultural Academy. 2020;2(50):206-210. doi: 10.18286/1816-4501-2020-2-206-210
  4. Akhmetova SO, Esirkepova ZhZh. Influence of the use of succinic and citric acids in compound feed on the slaughter and meat qualities of broiler chickens. (Conference proseedings) Agricultural sciences and agro-industrial complex at the turn of the century: coll. Materials of the XVIII Intern. scientific-practical. conf., (Novosibirsk, Jan. 13-Feb. 22, 2017). under the general. ed. S.S. Chernov. Novosibirsk: LLC "Center for the Development of Scientific Cooperation"; 2017:77-85.
  5. Koryagina AO, Bul’makova DS, Suleimanova AD, Rudakova NL, Mardanova AM, Smolencev SY, Sharipova MR. Bacterial enzymes as potential feed additives in poultry farming. Scientific notes of Kazan University. Series: Natural Sciences. 2019;161(3):459-471.              doi: 10.26907/2542-064X.2019.3.459-471
  6. Feoktistova NV, Mardanova AM, Lutfullin MT, Bogomolnaya LM, Sharipova MR. Microbial preparations in poultry farming. Scientific notes of Kazan University. Series: Natural Sciences. 2018;160(3):395-418. doi: 10.26907/2542-064X.2019.3.395-407
  7. Bychaev AG. Selection methods in breeding poultry. Izvesniya Saint-Petersburg State Agrarian University. 2022;2(67):125-133. doi: 10.24412/7078-1318-2022-2-125-133
  8. Vetvitskaya A. Myths and reality of replacement of antibiotics in poultry farming. Effective Animal Husbandry. 2020;7(164):52-57.
  9. Vorobyov SS, Vasiliev AA, Pozyabin SV, Sivokhina LA. The effects of an additive based on organic acids on the productive performance and feed efficiency in broilers. Poultry Farming. 2022;6:15-20. doi: 10.33845/0033-3239-2022-71-6-15-20
  10. Gorbach AA, Reznichenko LV, Reznichenko AA. Use of immunostimulants to exclude antibiotics in broiler poultry farming. Veterinary and Feeding. 2018;4:45-47.     doi: 10.30917/ATT-VK-1814-9588-2018-4-16
  11. Gorshkov VV. The effect of stocking density on broiler chicken performance. Bulletin of the Altai State Agrarian University. 2015;6(128):93-97.
  12. State register of medicinal products for veterinary use. [Internet]. Available from: URL: https://fsvps.gov.ru/ru/reestry1 (date of access: 06/06/2023).
  13. Dens P. Use of organic acids in poultry breeding. Farm Animals. 2013;3-4(4):76-80.
  14. Dzhavadov E. Advanced methods of vaccinal prevention. Animal Husbandry of Russia. 2020;S3:42-45. doi: 10.25701/ZZR.2020.54.92.018
  15. Egorova TA. Biosecurity in poultry production: the recent seminar. Poultry Farming. 2019;4:4-13. doi: 10.33845/0033-3239-2019-68-4-4-13.
  16. Kavtarashvily ASh, Novotorov EN, Gladin DV. Light pulsation in poultry house effect on layers production in led lighting systems. Poultry & Chicken Products. 2022а;1:42-45. doi: 10.30975/2073-4999-2022-24-1-42-45
  17. Kavtarashvili ASh, Novotorov EN, Gladin DV. The effects of different light intensity curves of LED lamps on the uniformity of lighting at different tiers of cage batteries and productivity in housed laying hens. Poultry Farming. 2022b;11:66-71. doi: 10.33845/0033-3239-2022-71-11-66-71
  18. Kochish II, Suprunov DA, Oleynik NV. Problems and development trends in poultry industry. Veterinary Medicine, Zootechnics and Biotechnology. 2017;9:87-90.
  19. Lopayeva NL. Influence of luminosity on the egg production of birds. Agrarian Bulletin of the Urals. 2015;6(136):61-64.
  20. Mailjan ES. The problem of using antibiotics in animal husbandry and ways to control microbial antibiotic resistance. BIO. 2021;12(255):4-16.
  21. Moal A, Thiery P. Systematic approach is the key to effective antibiotic-free poultry farming. Compound Feeds. 2022;2:58-60.
  22. Epimahova EE, Skripkin VS, Konoplev VI, Hodusov AA, Ponomareva ME, Zakotin VE. Scientifically substantiated recommendations on optimisation of microclimate in premises for keeping farm animals and poultry under intensive keeping in conditions of seasonal hypo- and hyperthermia in order to realise their genetic potential of productivity at a high level: guidelines. Stavropol': «AGRUS»; 2016:112 p.
  23. On Approval of the Doctrine of Food Security of the Russian Federation: Decree of the President of the Russian Federation from 21.01.2020. No. 20. [Internet]. Access from the GARANT system. URL: https://www.garant.ru/products/ipo/prime/doc/73338425/ (date of access: 01.06.2023).
  24. On Approval of the List of drugs intended for the treatment of infectious and parasitic diseases of animals caused by pathogenic microorganisms and conditionally pathogenic microorganisms, in respect of which restrictions are imposed on the use for therapeutic purposes, including for the treatment of farm animals: order of the Ministry of Agriculture of the Russian Federation of November 18, 2021, No. 771. [Internet]. Access from the GARANT system. URL: https://base.garant.ru/403131213/ (date of access: 01.06.2023).
  25. On approval of the Strategy for preventing the spread of antimicrobial resistance in the Russian Federation for the period up to 2030 and the action plan for its implementation with a draft report to the President of the Russian Federation on this issue: order of the Government of the Russian Federation of 25.09.2017 No. 2045-r. [Internet]. Access from the GARANT system. URL: https://www.garant.ru/products/ipo/prime/doc/71677266/ (data obrashhenija: 01.06.2023).
  26. Orlov MM. Influence of debeaking procedure on poultry stress tolerance and susceptibility to pecking. (Conference proceedings) Contribution of young scientists to agricultural science: Proceedings of the International Scientific and Practical Conference, (Kinel', 18 Apr. 2018) Kinel': Samara State Agricultural Academy; 2018:204-206.
  27. Seleznev SB. The main principles of the structural organization of the immune system of the japanese quails. Rudn Journal of Agronomy and Animal Industries. 2015;4:66-73.
  28. Novikova MV, Lebedeva IA, Drozdova LI, Byuler А Prospects of betulin application in broiler farming. Veterinary Science Today. 2020;4(35):277-282. doi: 10.29326/2304-196X-2020-4-35-277-282
  29. Pimenov NV, Pimenova VV. Bacteriophages in the concept of rehabilitation of poultry farms from salmonella infection. RJOAS. 2017;11:521-529. doi: 18551/rjoas.2017-11.69
  30. Ponomareva EA. Debeaking of mature herd of «High Line Brown» cross. World of Innovation. 2017;1:108-112.
  31. Dubrovin AV et al. The problem of microbial drug resistance in poultry industry: an overview. Poultry Farming. 2023;2:31-36. doi: 10.33845/0033-3239-2023-72-2-31-36
  32. Okolelova TM, Engashev SV, Shevyakov AN, Krivopishina LV. Risks associated with quality and rating of mineral raw materials and their prevention in poultry. International Bulletin of Veterinary Medicine. 2021;1:155-160.
  33. Sidorenko LI, Shherbatov VI. Biology of chickens: textbook. Krasnodar: KubSAU; 2016:243 p.
  34. Skvortsova LN. Increase of meat productivity and quality of broiler chickens meat when used ascorbic acid in mixed fodders. Agrarian Journal of Upper Volga Region. 2018;2(23):51-59.
  35. Strashnova PA, Mukhitov AA, Dan'ko ES. Features of the avian immune system. (Conference proceedings) In the world of scientific discovery: Materials of the IV International Student Scientific Conference. (Ul'janovsk, 20-21 May 2020). Ul'janovsk: Ulyanovsk State Agrarian University named after P.A. Stolypin. 2020;4(2):161-164.
  36. Seleznev SB, Pronin VV, Dyumin MS, Fisenko SP. Structural features of the immune system of birds. Russian Veterinary Journal. Productive Animals. 2016;3:28-30.(In Russ.)].
  37. Tarlavin NV, Veretennikov VV, Dzhavadov ED, Kraskov DA. Expression of immunity genes in red bone marrow of cross-loman brown chicks under influence of vaccination and infectious anemia virus in chicken. Kuban Veterinary. 2022;4:19-21. doi: 10.33861/2071-8020-2022-4-19-21
  38. Anuarbekova DM, Saginbaeva MB. Influence of forced molting of parent stock on incubation qualities of eggs. National Association of Scientists. 2022;77:22-25.
  39. Abd El-Hack ME, El-Saadony MT, Saad AM, et al. Essential oils and their nanoemulsions as green alternatives to antibiotics in poultry nutrition: a comprehensive review. Poult Sci. 2022;101(2):101584. doi: 10.1016/j.psj.2021.101584
  40. Abudabos AM, Alyemni AH, Dafalla YM, Khan RU. The effect of phytogenic feed additives to substitute in-feed antibiotics on growth traits and blood biochemical parameters in broiler chicks challenged with Salmonella typhimurium. Environ Sci Pollut Res Int. 2016;23(23):24151-24157. doi: 10.1007/s11356-016-7665-2
  41. Al-Mnaser A, Dakheel M, Alkandari F, Woodward M. Polyphenolic phytochemicals as natural feed additives to control bacterial pathogens in the chicken gut. Arch Microbiol. 2022;204(5):253. doi: 10.1007/s00203-022-02862-5
  42. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629-655. doi: 10.1016/S0140-6736(21)02724-0
  43. Basit MA, Kadir AA, Loh TC, et al. Comparative efficacy of selected phytobiotics with halquinol and tetracycline on gut morphology, ileal digestibility, cecalmicrobiota composition and growth performance in broiler chickens. Animals (Basel). 2020;10(11):2150. doi: 10.3390/ani10112150
  44. Bozkurt M, Aysul N, Küçükyilmaz K, et al. Efficacy of in-feed preparations of an anticoccidial, multienzyme, prebiotic, probiotic, and herbal essential oil mixture in healthy and Eimeria spp.-infected broilers. Poult Sci. 2014;93(2):389-399. doi: 10.3382/ps.2013-03368
  45. Bozkurt M, Bintaş E, Kırkan Ş, et al. Comparative evaluation of dietary supplementation with mannan oligosaccharide and oregano essential oil in forced molted and fully fed laying hens between 82 and 106 weeks of age. Poult Sci. 2016;95(11):2576-2591. doi: 10.3382/ps/pew140
  46. Burrello C, Garavaglia F, Cribiù FM, et al. Therapeutic faecal microbiota transplantation controls intestinal inflammation through IL10 secretion by immune cells. Nat Commun. 2018;9(1):5184. doi: 10.1038/s41467-018-07359-8
  47. Calik A, Emami NK, Schyns G, et al. Influence of dietary vitamin E and selenium supplementation on broilers subjected to heat stress, Part II: oxidative stress, immune response, gut integrity, and intestinal microbiota. Poult Sci. 2022;101(6):101858. doi: 10.1016/j.psj.2022.101858
  48. Dai D, Wu SG, Zhang HJ, Qi GH, Wang J. Dynamic alterations in early intestinal development, microbiota and metabolome induced by in ovo feeding of L-arginine in a layer chick model. J Anim Sci Biotechnol. 2020;11:19. doi: 10.1186/s40104-020-0427-5
  49. Delzenne NM, Olivares M, Neyrinck AM, et al. Nutritional interest of dietary fiber and prebiotics in obesity: Lessons from the MyNewGut consortium. Clin Nutr. 2020;39(2):414-424. doi: 10.1016/j.clnu.2019.03.002
  50. Duar RM, Kyle D, Casaburi G. Colonization resistance in the infant gut: the role of B. infantis in reducing pH and preventing pathogen growth. High Throughput. 2020;9(2):7. doi: 10.3390/ht9020007
  51. Dubrovin A, Tarlavin N, Brazhnik E, Melikidi V. Terminal RFLP and quantitative PCR analysis to determine the poultry microbiota and gene expression changes while using probiotic strains. In: Ronzhin A et al., editors. Agriculture digitalization and organic production: proceedings of the First International Conference, ADOP 2021, St. Petersburg, Russia, June 7-9, 2021. Singapore: Springer; 2022:91-102. doi: 10.1007/978-981-16-3349-2_8
  52. EFSA Panel on Animal Health and Welfare (AHAW), Nielsen SS, Alvarez J, et al. Welfare of domestic birds and rabbits transported in containers. EFSA J. 2022;20(9):e07441. doi: 10.2903/j.efsa.2022.7441
  53. Ejiofor T, Mgbeahuruike AC, Ojiako C, et al. Saccharomyces cerevisiae, bentonite, and kaolin as adsorbents for reducing the adverse impacts of mycotoxin contaminated feed on broiler histopathology and hemato-biochemical changes. Vet World. 2021;14(1):23-32. doi: 10.14202/vetw2021.23-32
  54. Elgeddawy SA, Shaheen HM, El-Sayed YS, et al. Effects of the dietary inclusion of a probiotic or prebiotic on florfenicol pharmacokinetic profile in broiler chicken. J Anim Physiol Anim Nutr (Berl). 2020;104(2):549-557. doi: 10.1111/jpn.13317
  55. El-Saadony MT, S F Khalil O, Osman A, et al. Bioactive peptides supplemented raw buffalo milk: Biological activity, shelf life and quality properties during cold preservation. Saudi J Biol Sci. 2021;28(8):4581-4591. doi: 10.1016/j.sjbs.2021.04.065
  56. El-Sabrout K, Khalifah A, Mishra B. Application of botanical products as nutraceutical feed additives for improving poultry health and production. Vet World. 2023;16(2):369-379. doi: 10.14202/vetworld.2023.369-379
  57. Elshaghabee FMF, Rokana N, Gulhane RD, Sharma C, Panwar H. Bacillus as potential probiotics: status, concerns, and future perspectives. Front Microbiol. 2017;8:1490. doi: 10.3389/fmicb.2017.01490
  58. Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491-502. doi: 10.1038/nrgastro.2017.75
  59. Goh YJ, Barrangou R, Klaenhammer TR. In vivo transcriptome of Lactobacillus acidophilus and  colonization  impact on murine host intestinal gene expression. mBio. 2021;12(1):e03399-20. doi: 10.1128/mBio.03399-20
  60. Hill C, Guarner F, Reid G, et al. Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506-514. doi: 10.1038/nrgastro.2014.66
  61. Hussnain F, Mahmud A, Mehmood S, Jaspal MH. Meat quality and cooking characteristics in broilers influenced by winter transportation distance and crate density. J Poult Sci. 2020;57(2):175-182. doi: 10.2141/jpsa.0190014
  62. Inatomi T, Otomaru K. Effect of dietary probiotics on the semen traits and antioxidative activity of male broiler breeders. Sci Rep. 2018;8(1):5874. doi: 10.1038/s41598-018-24345-8
  63. Kim SA, Jang MJ, Kim SY, Yang Y, Pavlidis HO, Ricke SC. Potential for prebiotics as feed additives to limit foodborne Campylobacter establishment in the poultry gastrointestinal tract. Front Microbiol. 2019;10:91. doi: 10.3389/fmicb.2019.00091
  64. Kong L, Wang Z, Xiao C, Zhu Q, Song Z. Glycerol monolaurate attenuated immunological stress and intestinal mucosal injury by regulating the gut microbiota and activating AMPK/Nrf2 signaling pathway in lipopolysaccharide-challenged broilers. Anim Nutr. 2022;10:347-359. doi: 10.1016/j.aninu.2022.06.005
  65. Kumar S, Shang Y, Kim WK. Insight into dynamics of gut microbial community of broilers fed with fructooligosaccharides supplemented low calcium and phosphorus diets. Front Vet Sci. 2019;6:95. doi: 10.3389/fvets.2019.00095
  66. Lara LJ, Rostagno MH. Impact of heat stress on poultry production. Animals (Basel). 2013;3(2):356-369. doi: 10.3390/ani3020356
  67. Lei M, Shi L, Huang C, et al. Effects of non-fasting molting on performance, oxidative stress, intestinal morphology, and liver health of laying hens. Front Vet Sci. 2023;10:1100152. doi: 10.3389/fvets.2023.1100152
  68. Maghsoudi A, Vaziri E, Feizabadi M, Mehri M. Fifty years of sheep red blood cells to monitor humoral immunity in poultry: a scientometric evaluation. Poult 2020;99(10):4758-4768. doi: 10.1016/j.psj.2020.06.058
  69. Martínez Y, Almendares CI, Hernández CJ, Avellaneda MC, Urquía AM, Valdivié M. Effect of acetic acid and sodium bicarbonate supplemented to drinking water on water quality, growth performance, organ weights, cecal traits and hematological parameters of young broilers. Animals (Basel). 2021;11(7):1865. doi: 10.3390/ani11071865
  70. McEwen SA, Collignon PJ. Antimicrobial Resistance: a One Health Perspective. MicrobiolSpectr. 2018;6(2). doi:10.1128/microbiolspec.ARBA-0009-2017
  71. Mehdi Y, Létourneau-Montminy MP, Gaucher ML, et al. Use of antibiotics in broiler production: Global impacts and alternatives. Anim Nutr. 2018;4(2):170-178. doi: 10.1016/j.aninu.2018.03.002
  72. Micciche AC, Foley SL, Pavlidis HO, McIntyre DR, Ricke SC. A review of prebiotics against salmonella in poultry: current and future potential for microbiome research applications. Front Vet Sci. 2018;5:191. doi: 10.3389/fvets.2018.00191
  73. More-Bayona JA, Torrealba D, Thomson C, Wakaruk J, Barreda DR. Differential effects of drinking water quality on phagocyte responses of broiler chickens against fungal and bacterial challenges. Front Immunol. 2020;11:584. doi: 10.3389/fimmu.2020.00584
  74. Nabavi SF, Di Lorenzo A, Izadi M, Sobarzo-Sánchez E, Daglia M, Nabavi SM. Antibacterial effects of cinnamon: from farm to food, cosmetic and pharmaceutical industries. Nutrients. 2015;7(9):7729-7748. doi: 10.3390/nu7095359
  75. Oso AO, Suganthi RU, Reddy GBM, et al. Effect of dietary supplementation with phytogenic blend on growth performance, apparent ileal digestibility of nutrients, intestinal morphology, and cecalmicroflora of broiler chickens. Poult Sci. 2019;98(10):4755-4766. doi: 10.3382/ps/pez191
  76. Patrascu O, Béguet-Crespel F, Marinelli L, et al. A fibrolytic potential in the human ileum mucosalmicrobiota revealed by functional metagenomic.Sci Rep. 2017;7:40248. doi: 10.1038/srep40248
  77. Peterson CT, Sharma V, Uchitel S, et al. Prebiotic potential of herbal medicines used in digestive health and disease. J Altern Complement Med. 2018;24(7):656-665. doi: 10.1089/acm.2017.0422
  78. Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 2017;279(1):70-89. doi: 10.1111/imr.12567
  79. Raei H, KarimiTorshizi MA, Sharafi M, Ahmadi H. Improving seminal quality and reproductive performance in male broiler breeder by supplementation of camphor. Theriogenology. 2021;166:1-8. doi: 10.1016/j.theriogenology.2021.02.002
  80. Rajput IR, Ying H, Yajing S, et al. Saccharomyces boulardii and Bacillus subtilis B10 modulate TLRs and cytokines expression patterns in jejunum and ileum of broilers. PLoS One. 2017;12(3):e0173917. doi: 10.1371/journal.pone.0173917
  81. Rehman A, Arif M, Sajjad N, et al. Dietary effect of probiotics and prebiotics on broiler performance, carcass, and immunity. Poult Sci. 2020;99(12):6946-6953. doi: 10.1016/j.psj.2020.09.043
  82. Rheinberger CM, Herrera-Araujo D, Hammitt JK. The value of disease prevention vs treatment.J Health Econ. 2016;50:247-255. doi:10.1016/j.jhealeco.2016.08.005
  83. Ricke SC. Impact of prebiotics on poultry production and food safety. Yale J Biol Med. 2018;91(2):151-159.
  84. Ricke SC. Potential of fructooligosaccharide prebiotics in alternative and nonconventional poultry production systems. Poult Sci. 2015;94(6):1411-1418. doi: 10.3382/ps/pev049
  85. Ricke SC. Prebiotics and alternative poultry production. Poult Sci. 2021;100(7):101174. doi: 10.1016/j.psj.2021.101174
  86. [Internet] Available from: https://www.ruma.org.uk (accessed 06.06.2023)
  87. Saki AA, Aliarabi H, HosseiniSiyar SA, Salari J, Hashemi M. Effect of a phytogenic feed additive on performance, ovarian morphology, serum lipid parameters and egg sensory quality in laying hen. Vet Res Forum. 2014;5(4):287-293.
  88. Saraiva MMS et al. Antimicrobial resistance in the globalized food chain: a One Health perspective applied to the poultry industry. Braz J Microbiol. 2022;53(1):465-486. doi: 10.1007/s42770-021-00635-8
  89. Scott KP, Antoine JM, Midtvedt T, van Hemert S. Manipulating the gut microbiota to maintain health and treat disease. MicrobEcol Health Dis. 2015;26:25877. doi: 3402/mehd.v26.25877
  90. Soliman ES, Hassan RA, Farid DS. The efficiency of natural-ecofriendly clay filters on water purification for improving performance and immunity in broiler chickens. Open Vet J. 2021;11(3):483-499. doi: 10.5455/OVJ.2021.v11.i3.22
  91. Stevanović ZD, Bošnjak-Neumüller J, Pajić-Lijaković I, Raj J, Vasiljević M. Essential oils as feed additives-future perspectives. Molecules. 2018;23(7):1717. doi: 10.3390/molecules23071717
  92. Sun H, Chen D, Cai H, et al. Effects of fermenting the plant fraction of a complete feed on the growth performance, nutrient utilization, antioxidant functions, meat quality, and intestinal microbiota of broilers. Animals (Basel). 2022;12(20):2870. Published 2022 Oct 21. doi: 10.3390/ani12202870
  93. Suresh G, Das RK, KaurBrar S, et al. Alternatives to antibiotics in poultry feed: molecular perspectives. Crit Rev Microbiol. 2018;44(3):318-335. doi: 10.1080/1040841X.2017.1373062
  94. Tachibana T, Tsutsui K. Neuropeptide control of feeding behavior in birds and its difference with mammals. Front Neurosci. 2016;10:485. doi:10.3389/fnins.2016.00485
  95. S. FDA. Summary Report On Antimicrobials Sold or Distributed for Use in Food-Producing Animals, 2020. [Internet] Available from: https://www.fda.gov/media/154820/download (accessed 06.06.2023).
  96. UK-VARSS 2020. [Internet] Available from: https://www.gov.uk/government/publi-cations/ veterinary-antimicrobial-resistance-and-sales-surveillance-2020 (accessed 06.06.2023)
  97. Upadhyay A, Arsi K, Wagle BR, et al. Trans-cinnamaldehyde, carvacrol, and eugenol reduce Campylobacter jejuni colonization factors and expression of virulence genes in Vitro. Front Microbiol. 2017;8:713. doi: 10.3389/fmicb.2017.00713
  98. van Dijk A, Hedegaard CJ, Haagsman HP, Heegaard PMH. The potential for immunoglobulins and host defense peptides (HDPs) to reduce the use of antibiotics in animal production. Vet Res. 2018;49(1):68. doi: 10.1186/s13567-018-0558-2
  99. Velazquez-Meza ME, Galarde-López M, Carrillo-Quiróz B, Alpuche-Aranda CM. Antimicrobial resistance: One Health approach. Vet 2022;15(3):743-749. doi: 10.14202/vetworld.2022.743-749
  100. Yang J, Wang J, Huang K, et al. Selenium-enriched Bacillus subtilis yb-114246 improved growth and immunity of broiler chickens through modified ileal bacterial composition. Sci Rep. 2021;11(1):21690. doi: 10.1038/s41598-021-00699-4
  101. Yang J, Zhan K, Zhang M. Effects of the use of a combination of two bacillus species on performance, egg quality, small intestinal mucosal morphology, and cecalmicrobiota profile in aging laying hens. Probiotics Antimicrob Proteins. 2020;12(1):204-213. doi: 10.1007/s12602-019-09532-x
  102. Yang X, Xin H, Yang C, Yang X. Impact of essential oils and organic acids on the growth performance, digestive functions and immunity of broiler chickens. Anim Nutr. 2018;4(4):388-393. doi: 10.1016/j.aninu.2018.04.005
  103. Yaqoob MU, El-Hack MEA, Hassan F, et al. The potential mechanistic insights and future implications for the effect of prebiotics on poultry performance, gut microbiome, and intestinal morphology. Poult Sci. 2021;100(7):101143. doi: 10.1016/j.psj.2021.101143
  104. Zeng Z, Zhang S, Wang H, Piao X. Essential oil and aromatic plants as feed additives in non-ruminant nutrition: a review. J Anim Sci Biotechnol. 2015;6(1):7. doi: 10.1186/s40104-015-0004-5
  105. Zhai H, Liu H, Wang S, Wu J, Kluenter AM. Potential of essential oils for poultry and pigs. Anim Nutr. 2018;4(2):179-186. doi: 10.1016/j.aninu.2018.01.005
 

Information about the authors:

Tatyana N Kholodilina, Cand. Sci. (Agriculture), Head of the Testing Center of the Central Common Use Center, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 January St., Orenburg, 460000; Associate Professor of the Department of «Ecology and Nature Management», Orenburg State University, 13 Pobedy Ave., Orenburg, 460018, tel.: 8-353-277-39-97.

Irina V Shavrina, laboratory researcher of the Testing Center, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 January St., Orenburg, 460000, tel.: 8-922-885-64-74.

Maxim V Solovyov, Master's student, Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 January St., Orenburg, 460000, tel.: 8-922-830-20-19.

 

The article was submitted 19.05.2023; approved after reviewing 07.08.2023; accepted for publication 11.09.2023.

Download